Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
= \(\left(3x^3+1\right)^2-\left(3x\right)^2-\left(3x^3+1\right)^2\)
= \(9x^2\)
Đặt \(3x^3+1=y\)
\(\Rightarrow\left(y-3x\right)\left(y+3x\right)-y^2\)
\(=y^2-9x^2-y^2=-9x^2\)
\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)
\(=2a^2.2b^2-4a^2b^2=0\)
\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)
\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)
\(=\left[4-11x\right]^2\)
\(=16-88x+121x^2\)
chúc bn học tốt
a) (x+2)(x−2)−(x−3)(x+1)
=x2−22−(x2+x−3x−3)
=x2−4−x2−x+3x+3
=2x−12x−1
b) (2x+1)2+(3x−1)2+2(2x+1)(3x−1)(
=(2x+1)2+2.(2x+1)(3x−1)+(3x−1)2
=[(2x+1)+(3x−1)]2
= (2x+1+3x−1)2
=(5x)2=25x2
\(\left(2x+1\right)^2+\left(3x-1\right)^2+2\left(2x+1\right)\left(3x-1\right)\))
= \(\left(2x+1\right)^2+2\left(2x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
= \(\left[\left(2x+1\right)+\left(3x-1\right)\right]^2\)
= \(\left[2x+1+3x-1\right]^2\)
=\(\left(5x\right)^2\)= \(25x^2\)
\(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=5\left(4x^2-4x+1\right)+4\left(x^2+3x-x-3\right)-2\left(25-30x+9x^2\right)\)
\(=20x^2-20x+5+4x^2+12x-4x-12-50+60x-18x^2\)
\(=6x^2+48x-57\)
\(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=5\left(4x^2-4x+1\right)+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=5\left(4x^2-4x+1\right)+4\left(x-1\right)\left(x+3\right)-2\left(25-3x+9x^2\right)\)
\(=20x^2-20x+5+4\left(x-1\right)\left(x+3\right)-2\left(25-30x+9x^2\right)\)
\(=20x^2-20x+5+4x^2+8x-12-50+60x-18x^2\)
\(=6x^2+48x-57\)
b) \(\left(3x^2-2x+1\right).\left(3x^2+2x+1\right)-\left(3x^2+1\right)^2\)=\(\left(3x^2\right)^2-\left(2x+1\right)^2-\left(3x^2+1\right)^2\)=\(\left(3x^2\right)^2-[\left(2x\right)^2+4x+1]-[\left(3x^2\right)^2+6x^2+1]\)=\(\left(2x\right)^2+4x+1+6x^2-1\)=\(4x^2+4x+6x^2\)=\(10x^2+4x\)
c)\(\left(x^2-5x+2\right)^2-2\left(x^2-5x+2\right)\left(5x-2\right)+\left(5x-2\right)^2\)=\([\left(x^2-5x+2\right)-\left(5x-2\right)]^2\)=\(x^2-5x+2-5x+2\)=\(x^2-10x+4\)=\(x^2-4x+2^2-6x\)=\(\left(x-2\right)^2-6x\)
\(\left(x-1\right)^3+4\left(x+1\right)\left(1-x\right)+3\left(x-1\right)\left(x^2+x+1\right).\)
\(=\left(x-1\right)^3+4\left(x+1\right)\left(1-x\right)+3\left(x-1\right)^3.\)
\(=\left(x-1\right)^3+4\left(1-x^2\right)+3\left(x-1\right)^3.\)
\(=\left(x-1\right)^3+3\left(x-1\right)^3+4\left(1-x^2\right)\)
\(=4\left(x-1\right)^3+4\left(1-x^2\right)\)
\(=4\left[\left(x-1\right)^3+\left(1-x^2\right)\right]\)
Đặt \(3x-1=y,x+2=z\)
\(\Rightarrow y^2-2yz+z^2=\left(y-z\right)^2\)
\(=\left(3x-1-x-2\right)^2=\left(2x-3\right)^2\)