Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-5\right)^2=x^2+6x+9\\ \Leftrightarrow\left(2x-5\right)^2=\left(x+3\right)^2\\ \Leftrightarrow\left(2x-5\right)^2-\left(x+3\right)^2=0\\\Leftrightarrow \left(2x-5-x-3\right)\left(2x-5+x+3\right)=0\\ \Leftrightarrow\left(x-8\right)\left(3x-2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-8=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{8;\frac{2}{3}\right\}\)
\(x^2+\left(x+2\right)\left(11x-7\right)=4\\ \Leftrightarrow x^2+11x^2-7x+22x-14=4\\ \Leftrightarrow12x^2+15x-18=0\\ \Leftrightarrow12\left(x^2+\frac{5}{4}x-\frac{3}{2}\right)=0\\\Leftrightarrow x^2+\frac{5}{4}x-\frac{3}{2}=x^2-\frac{3}{4}x+2x-\frac{3}{2}=0\\\Leftrightarrow x\left(x-\frac{3}{4}\right)+2\left(x-\frac{3}{4}\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-\frac{3}{4}\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+2=0\\x-\frac{3}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\frac{3}{4}\end{matrix}\right. \)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-2;\frac{3}{4}\right\}\)
a. \(x^2-2xy+x^3y=x\left(x-2y+x^2y\right)\)
b. \(7x^2y^2+14xy^2-21^2y=7y\left(x^2y+2xy-63\right)\)
c. \(10x^2y+25x^3+xy^2=x\left(5x+y\right)^2\)
1. \(x^4+6x^3+11x^2+6x+1=0\)
\(\Leftrightarrow x^4+6x^3+9x^2+2x^2+6x+1=0\)
\(\Leftrightarrow\left(x^2+3x+1\right)^2=0\)
\(\Leftrightarrow x^2+3x+1=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)
2. \(x^4+x^3-4x^2+x+1=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)+2.\frac{x}{2}\left(x^2+1\right)+\left(\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)
\(\Leftrightarrow\left(x^2+1+\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)
\(\Leftrightarrow\left(x^2-1\right)^2\left(x^2+3x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\x^2+3x+1=0\end{cases}}\)
+) ( x - 1 )2 = 0
<=> x - 1 = 0
<=> x = 1
+) x2 + 3x + 1 = 0
<=> ( x + 3/2 )2 - 5/4 = 0
<=> ( x + 3/2 )2 = 5/4
<=> \(\hept{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)
Vậy pt có tập nghiệm \(S=\left\{1;\frac{-3+\sqrt{5}}{2};-\frac{3+\sqrt{5}}{2}\right\}\)
1a,(1-x)(x+2)=0
=>1-x=0=>x=1
=>x+2=0=>x=-2
1b,(2x-2)(6+3x)(3x+2)=0
=>2x-2=0=>2(x-1)=0=>x=1
=>6+3x=0=>3x=-6=>x=-2
=>3x+2=0=>3x=-2=>x=-2/3
1c,(5x-5)(3x+2)(8x+4)(x^2-5)=0
=>5x-5=0=>5(x-1)=0=>x=1
=>3x+2=0=>x=-2/3
=>8x+4=0=>4(2x+1)=0=>2x+1=0=>2x=-1=>x=-1/2
=>x^2-5=0=>x^2=5=>x=\(+-\sqrt{5}\)
A | B |
1.(x3-3x2+3x-1):(x-1) | a.x2-2x+1 |
2.(x+3)(x2-3x+9) | b.(x2+3)(x-1) |
3. x4+3x-x3-3 | c. 27+x3 |
Nối: 1--a ; 2--c ;3 -- b |
1) \(2x^4+5x^2+2=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2+1=0\\x^2+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=-\frac{1}{2}\\x^2=-2\end{cases}}\) (vô lý)
=> pt vô nghiệm
2) \(2x^4-7x^2-4=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\2x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=4\\x^2=-\frac{1}{2}\left(vl\right)\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
3) \(x^4-5x^2+4=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=1\\x^2=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm1\\x=\pm2\end{cases}}\)
4) \(2x^4-20x^2+18=0\)
\(\Leftrightarrow x^4-10x^2+9=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=9\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)
1. \(2x^4+5x^2+2=0\)
Vì \(2x^4+5x^2+2\ge2\)
=> Pt trên vô nghiệm
2. \(2x^4-7x^2-4=0\)
\(\Leftrightarrow2x^4+x^2-8x^2-4=0\)
\(\Leftrightarrow x^2\left(2x^2+1\right)-4\left(2x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x^2+1\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2x^2+1=0\left(vo-ly\right)\\x+2=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)
i,<=>(2x - 1)(2x - 1 + 2 - x) = 0 <=> (2x - 1)(x + 1) = 0
<=> x = 1/2 hoặc x = -1
j,<=>(x - 1)(5x + 3) - (3x - 5)(x - 1) = 0
<=>(x - 1)(2x + 8) = 0 <=> x = 1 hoặc x = -4
k,<=>4(x + 5)(x - 6) = 0 <=> (x + 5)(x - 6) = 0
<=> x = -5 hoặc x = 6
m,<=>x^2(x + 1) + x + 1 = 0
<=>(x^2 + 1)(x + 1) = 0 (1)
Mà x^2 + 1 > 0 với mọi x nên (1) xảy ra <=> x + 1 = 0
<=> x = -1