K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
7 tháng 10 2021

a) \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2=B\)

b) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1< 2^{16}=A\)

c) Tương tự a).

d) Tương tự b). 

9 tháng 8 2016

a) \(A=1999\cdot2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1\)

=> \(A< B\)

b) \(A=12^6\)

    \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

       \(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

      \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

      \(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

      \(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)

=> \(A>B\)

c) \(A=2011\cdot2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1\)

   \(B=2012^2\)

=> \(A< B\)

d) \(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

        \(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)}{2}\)

          \(=\frac{\left(3^4-1\right)\left(3^4+1\right)..\left(3^{64}+1\right)}{2}\)

          \(=\frac{\left(3^8-1\right).....\left(3^{64}+1\right)}{2}\)

           \(=\frac{3^{128}-1}{2}\)

 \(B=3^{128}-1\)

=> \(A< B\)

Cảm ơn bạn 

26 tháng 9 2017

a, Ta co : A = 1999 * 2001

= ( 2000 - 1 ) *( 2000 + 1 )

= \(2000^2-1\)

Vây A < B

cậu ơi tối mình về mình làm tiếp cho bây giờ mình phải đi hok .

26 tháng 9 2017

a) A = 1999.2001 và B = 20002
Ta có :
A = 1999.2001
= ( 2000 - 1 )( 2000 + 1 )
= 20002 - 12
= 20002 - 1
Mà : 20002 - 1 < 20002
=> A < B

28 tháng 8 2019

Tham khảo:

Câu hỏi của Phương Anh Nguyễn Thị - Toán lớp 8 | Học trực tuyến

10 tháng 10 2018

\(A=4\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^{128}-1\right)< B\)

10 tháng 10 2018

\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)

\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1=B\)

\(\Rightarrow A< B\)

14 tháng 7 2018

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)

                          \(.........\)

\(=\frac{1}{2}\left(3^{168}-1\right)\)\(< \)\(3^{168}-1\)

\(\Rightarrow\)\(A< B\)

17 tháng 7 2018

Tại sao 4 lại trở thành 2 vậy. Giải thích giúp mình nhé.

12 tháng 7 2018

a, \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2=B\)

Vậy A<B

b, \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=A\)

Vậy A>B

4 tháng 8 2018

Bài 1:

a) \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)

\(\Rightarrow x^3-3x^2+3x-1+2^3-x^3+3x^2+6x=17\)

\(\Rightarrow9x+7=17\)

\(\Rightarrow9x=17-7=10\)

\(\Rightarrow x=\dfrac{10}{9}\)

b) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)

\(\Rightarrow x^3+2^3-x^3+2x=15\)

\(\Rightarrow8+2x=15\)

\(\Rightarrow2x=15-8=7\)

\(\Rightarrow x=\dfrac{7}{2}\)

c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)

\(\Rightarrow x^3-3x^2.3+3x.3^2-3^3-x^3+3^3+9\left(x^2+2x+1\right)=15\)

\(\Rightarrow-9x^2+27x+9x^2+18x+9=15\)

\(\Rightarrow45x+9=15\)

\(\Rightarrow45x=6\)

\(\Rightarrow x=\dfrac{6}{45}=\dfrac{2}{15}\)

d) \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

\(\Rightarrow x\left(x^2-5^2\right)-x^3-2^3=3\)

\(\Rightarrow x^3-25x-x^3-8=3\)

\(\Rightarrow-25x-8=3\)

\(\Rightarrow-25x=3+8=11\)

\(\Rightarrow x=-\dfrac{11}{25}\)

Bài 2:

a) Ta có:

\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^8-1\right)\left(2^8+1\right)\)

\(B=2^{16}-1\)

Vì 216 - 1 < 216

=> B < A

b) Ta có:

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{128}-1\right)\)

Vì 1/2( 3128 - 1) < 3128 - 1

=> A < B