Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/3ma +2/3mb >c ( Bất đẳng thức tam giác)
2/3ma+ 2/3c> b
2/3mb +2/3mc > a
=> 4/3 ( ma +mb + mc) > a+b+c
a) Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{ma}{mc}=\frac{nb}{nd}\)
áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{ma}{mc}=\frac{nb}{nd}=\frac{ma+nb}{mc+nd}=\frac{ma-nb}{mc-nd}\)
\(\Rightarrow\frac{ma+nc}{ma-nb}=\frac{mc+nd}{mc-nd}\left(đpcm\right)\)
sai đề mb=nb TL:
a)đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)
=>a=kb ;c=kd
=>\(\frac{ma+nb}{ma-nb}=\frac{m.k.b+n.b}{m.k.b-n.b}=\frac{b\left(m.k+n\right)}{b\left(m.k-n\right)}=\frac{m.k+n}{m.k-n}\)
Mặt khác:
\(\frac{mc+nd}{mc-nd}=\frac{m.k.d+n.d}{m.k.d-n.d}=\frac{d\left(m.k+n\right)}{d\left(m.k-n\right)}=\frac{m.k+n}{m.k-n}\)
=>\(\frac{ma+nb}{ma-nb}=\frac{mc+nd}{mc-nd}\) (đpcm)
hc tốt
-Áp dụng BĐT trong tam giác ta có:
\(AG+BG>AB;BG+CG>BC;CG+AG>CA\)
-Cộng các vế với nhau ta được:
\(2\left(AG+BG+CG\right)>AB+AC+BC\)
\(\Rightarrow2.\dfrac{2}{3}\left(AE+BF+CD\right)>AB+AC+BC\)
\(\Rightarrow AE+BF+CD>\dfrac{3}{4}AB+AC+BC\)
a, vì M nằm ở trong tam giác ABC nên MC và MB nằm ở trong tam giác ABC
=) MC va MB lần lượt chia góc C và B làm 2 nửa
=) ^B = ^B1+ ^B2 ^C= ^C1+^C2
theo quan hệ giứa góc và cạnh đối diên có
ab tương ứng vs góc C, ac tương ứng vs góc B
MB .........................C1, MC B2
CÓ : ^B+^C > ^B2+^C2
=) AB+AC > MB+MC ( THEO QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN)
CON B THÌ CHỊU NHÉ
A B C M
a) Làm như bạn ly
b)Từ câu a) suy ra MB + MC < AB + AC;MA+MB < AC + BC
MA + MC < AB + BC
Cộng theo vế suy ra: \(2\left(MA+MB+MC\right)< 2\left(AB+BC+CA\right)\)
Suy ra \(MA+MB+MC< AB+BC+CA\) (1)
Mặt khác,áp dụng BĐT tam giácL
MB + MC > BC.Tương tự với hai BĐT còn lại và cộng theo vế: \(2\left(MA+MB+MC\right)>AB+BC+CA\)
Chia hai vế cho 2: \(MA+MB+MC>\frac{AB+BC+CA}{2}\)
giả sử ta đã dựng được điểm M nằm trong tam giác vuông cân ABC sao cho MA:MB:MC bằng 2:3:1
trên nửa mặt phẳng có bờ là đường thẳng AB không chứa điểm C vẽ tia Ax tạo với AB một góc bằng góc AMC . lấy trên Ax điểm K sao cho AK=AM
dễ thấy góc KAM=90 độ và AK=AM suy ra tam giác AKM vuông cân \Rightarrow góc AKM = 45 độ
xét tam giác AMC và tg AKB có AB=AC , AM=AK , góc CAM = góc BAK
suy ra tg AMC= tg AKB (c g c) suy ra CM=BK và góc AMC= góc AKB
vì MA:MB:MC bằng 2:3:1 nên nếu đặt MC=a ( a>0) thì ta có
MC=BK=a , AM=AK=2a , BM=3a
vì tam giác AKM vuông cân . theo pitago ta có AK2+AM2=MK2AK2+AM2=MK2
suy ra 4a2+4a2=MK24a2+4a2=MK2
MK2=8a2MK2=8a2
suy ra trong tam giác AKB có MK2+BK2=8a2+a2=9a2=BM2MK2+BK2=8a2+a2=9a2=BM2
suy ra tam giác BKM vuông tại K( đl pitago đảo)
suy ra góc BKM =90 độ
ta có góc AKB= góc AKM+ góc BKM = 45 độ+ 90 độ =135 độ
suy ra góc ACM = 135 độ
Vậy góc ACM = 135 độ