Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\sqrt{1-x}-\sqrt{x+1}+3\sqrt{1-x^2}=3-x\)
\(2\sqrt{1-x}-\sqrt{1+x}+2\sqrt{\left(1-x\right)\left(1+x\right)}+\sqrt{\left(1-x\right)\left(1+x\right)}=3-x\)
\(2\sqrt{1-x}\left(1-\sqrt{1+x}\right)-\sqrt{1+x}\left(1-\sqrt{1-x}\right)=3-x\)
Đặt \(f\left(x\right)=\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}\) \(\Leftrightarrow\) \(f\left(x\right)=f\left(-2\right)\Leftrightarrow x=-2\)
Vậy phương trình có nghiệm x=-2
Xét \(y=\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}\), y liên tục và có đạo hàm \(y'=\dfrac{1}{3\sqrt[3]{\left(x+1\right)^2}}+\dfrac{1}{3\sqrt[3]{\left(x+2\right)^2}}+\dfrac{1}{3\sqrt[3]{\left(x+3\right)^2}}>0\) trên \(R\backslash\left\{-1;-2;-3\right\}\)\(\Rightarrow y\) đồng biến trên ... Mà \(y\left(-2\right)=0\Rightarrow x=-2\) là nghiệm duy nhất của pt
(=)\(\sqrt[3]{x+1}+\sqrt[3]{x+2}=-\sqrt[3]{x+3}\)
(=) \(x+1+x+2+3\sqrt[3]{\left(x+1\right)\left(x+2\right)}.\left(\sqrt[3]{x+1}+\sqrt[3]{x+2}\right)\)= \(-x-3\)
(=) \(3x+6=3\sqrt[3]{x^3+6x^2+11x+6}\) (vì \(\sqrt[3]{x+1}+\sqrt[3]{x+2}=-\sqrt[3]{x+3}\))
=) \(\left(x+2\right)^3=x^3+6x^2+11x+6\)
phần còn lại tự giải nhé
\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)
\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)
Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)
Phương trình trở thành :
\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)
a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)
Vậy phương trình có nghiệm là \(x=0\)
b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)
Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]
Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)
t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2
Suy ra phương trình đã cho có nghiệm đúng
\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)
Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm
Điều kiện \(x\in R\)
Lập phương 2 vế phương trình đã cho ta được :
\(2x-1+x-1+3\sqrt[3]{2x-1}\left(\sqrt[3]{2x-1}+\sqrt[3]{x-1}\right)=3x-1\)
\(\Leftrightarrow\sqrt[3]{2x-1}\sqrt[3]{x-1}\left(\sqrt[3]{2x-1}+\sqrt[3]{x-1}\right)=1\)
mà \(\sqrt[3]{2x-1}+\sqrt[3]{x-1}=\sqrt[3]{3x+1}\) nên ta có :
\(\sqrt[3]{2x-1}\sqrt[3]{x-1}\sqrt[3]{3x+1}=1\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)\left(3x+1\right)=1\)
\(\Leftrightarrow x\in\left\{0;\frac{7}{6}\right\}\)
Thử lại ta thấy \(x=\frac{7}{6}\) là nghiệm duy nhất của phương trình đã cho
Tập xác định \(D=\left[-1;1\right]\)
Phương trình đã cho viết lại như sau :
\(\left(1+x\right)+2\left(1-x\right)-2\sqrt{1-x}+\sqrt{1+x}-3\sqrt{1-x^2}=0\) (a)
Đặt \(u=\sqrt{1+x}\) và \(v=\sqrt{1-x}\); \(\left(u\ge0;v\ge0\right)\), ta được :
\(u^2+2v^2-2v+u-3uv=0\)
\(\Leftrightarrow\left(u^2-2uv\right)+\left(u-2v\right)-\left(uv-2v^2\right)=0\)
\(\Leftrightarrow\left(u-2v\right)\left(u-v+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}u=2v\\u-v+1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{1+x}=1\sqrt{1-x}\\\sqrt{1+x}+1=\sqrt{1-x}\end{array}\right.\)
\(\Leftrightarrow\left(x;y\right)=\left(\frac{3}{5};-\frac{\sqrt{3}}{2}\right)\)
đk : \(x\ge-1\)
Đặt \(\sqrt{x+1}=b\Rightarrow\hept{\begin{cases}x^3+b=1\\b^2=x+1\end{cases}}\) rút \(b=1-x^3\text{ thế xuống phương trình dưới ta có : }\)
\(\left(1-x^3\right)^2=x+1\Leftrightarrow1-2x^3+x^6=x+1\Leftrightarrow x\left(x^5-2x^2-1\right)=0\)
Vậy \(\orbr{\begin{cases}x=0\\x^5-2x^2-1=0\end{cases}}\) mà chú ý \(b=1-x^3\ge0\Rightarrow x\le1\Rightarrow x^5< 2x^2+1\)
nên phương trình \(x^5-2x^2-1=0\text{ không có nghiệm nào thỏa mãn}\)
vậy pt có nghiệm duy nhất x=0