Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Quy tắc: Giả sử ta phải thực hiện hai hành động liên tiếp. Nếu hành động thứ nhất có m kết quả và ứng với mỗi kết quả đó, hành động thứ hai có n kết quả, thì có m.n kết quả của hai hành động liên tiếp ấy.
- Ví dụ:
Một lớp có 3 tổ, mỗi tổ có 6 nam và 4 nữ. Cần chọn từ mỗi tổ một người để thành lập đội thanh niên tình nguyện mùa hè xanh. Hỏi có bao nhiêu cách để lập được một đội?
Giải:
Để lập đội, từ mỗi đội ta chọn một người:
+ Có 10 cách chọn 1 người từ tổ thứ nhất
+ Có 10 cách chọn 1 người từ tổ thứ hai
+ Có 10 cách chọn 1 người từ tổ thứ ba
Từ đó, theo quy tắc nhân ta có:
10. 10. 10 = 1000 (cách chọn)
+ Quy tắc cộng:
Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động thứ nhất có m cách thực hiện, hành động thứ hai có n cách thực hiện không trùng với bất kì cách nào của hành động thứ nhất thì công việc đó có m + n cách thực hiện.
Quy tắc cộng có thể mở rộng với nhiều hành động.
+ Ví dụ:
Có hai tổ học sinh tham gia lao động, tổ thứ nhất có 8 học sinh, tổ thứ hai có 10 học sinh. Hỏi cô giáo có bao nhiêu cách chọn ra 3 học sinh thuộc cùng một tổ?
Giải:
TH1: Chọn 3 học sinh thuộc tổ thứ nhất:
⇒ Có: C38 = 56 cách chọn.
TH2: Chọn 3 học sinh thuộc tổ thứ hai:
⇒ Có: C310 = 120 cách chọn.
Theo quy tắc cộng ⇒ Cô giáo có: 120 + 56 = 176 (cách chọn).
Một tuần có 7 ngày
Do có 12 người bạn nên ngày thứ nhất bạn A có 12 cách chọn 1 người bạn để thăm
Ngày thứ 2 có 11 cách chọn (loại trừ người đã thăm ngày đầu)
Ngày thứ 3 có 10 cách chọn (loại trừ 2 người đã thăm)
...
Ngày thứ 7 có 6 cách chọn
Do đó số cách là:
\(12.11.10.9.8.7.6=3991680\)
+ Quy tắc nhân:
Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu hành động thứ nhất có m cách thực hiện, hành động thứ hai có n cách thực hiện thì công việc đó được hoàn thành bởi m.n cách thực hiện.
Quy tắc nhân có thể mở rộng đối với nhiều hành động liên tiếp.
+ Ví dụ áp dụng:
Một nhóm học sinh gồm 8 nam và 10 nữ tham gia văn nghệ. Cô giáo cần chọn ra một đội gồm 2 nam và 2 nữ để biểu diễn một tiết mục múa. Hỏi cô giáo có bao nhiêu cách chọn?
Giải:
Việc chọn 2 nam và 2 nữ là một công việc cần hoàn thành bởi 2 bước liên tiếp:
+ Chọn 2 học sinh nam: Có C28 = 28 (cách chọn).
+ Chọn 2 học sinh nữ: Có C210 = 45 (cách chọn)
⇒ Theo quy tắc nhân: Có 28.45 = 1260 (cách chọn).
+ Để chứng minh những mệnh đề liên quan đến số tự nhiên n ∈ N* là đúng với mọi n mà không thể thử trực tiếp được thì ta làm như sau:
Bước 1: Kiểm tra mệnh đề đúng với n = 1 .
Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k ≥ 1. Chứng minh rằng nó cũng đúng với n = k+1.
Bước 3: Kết luận mệnh đề đúng với n ∈ N*.
+ Ví dụ: Chứng minh rằng với mọi n ∈ N* ta có: n3 + 5n chia hết cho 6.
Chứng minh: Đặt P(n) = n3 + 5n.
Với n =1 ⇒ P(1) = 6 ⋮ 6
Giả sử (Pn) chia hết cho 6 đúng với n=k ≥1, nghĩa là, ta có:
P(k) = (k3 + 5k) ⋮ 6.
Ta có: P(k+1) = (k+1)3 + 5(k+1) = k3 + 3k2 + 3k + 1 + 5k + 5 = k3 + 5k + 3(k2 + k) + 6
Mặt khác, theo giả thiết quy nạp ta có: k3 + 5k ⋮6.
Hơn nữa k2 + k = k(k+1) : 2 ( hai số tự nhiên tiếp k, k +1 phải có một số chẵn do k(k+1):2).
Do vậy P(k+1)⋮6. Tức mệnh đề đúng với n = k + 1.
Theo nguyên lí quy nạp, ta có P(n) = n3 + 5n chia hết cho 6 với mọi n ∈ N*.
a, A= 23 - x - x + 46 + 2x - 43
A= 26
b, B = 4 + 2x + 76 - x - x - 99
B = -19
HT và $$$
Gọi (un) và (an) là hai cấp số cộng có công sai lần lượt là \(d_1\) và d2 và có cùng n số hạng.
Ta có:
un = u1 + (n -1) d1
an = a1 + (n – 1)d2
⇒ un + an = u1 + a1 + (n – 1).(d1 + d2)
Vậy un + an là cấp số cộng có số hạng đầu là u1 + a1 và công sai là d1 + d2
Ví dụ:
1, 3, 5, 7 ,.... là cấp số cộng có công sai d1 = 2
0, 5, 10, 15,.... là cấp số cộng có công sai d2 = 5
⇒ 1, 8, 15, 22 ,... là cấp số cộng có công sai là d = d1 + d2 = 2 + 5 = 7
Giả sử có hai cấp số cộng (un) với công sai d1 và (vn) với công sai d2.
Xét dãy (an) với an = un + vn
Ta có: an + 1 – an = (un + 1 + vn + 1) – (un + vn)
= (un + d1 + vn + d2) – (un + vn)
= d1 + d2 = const
⇒(an) là cấp số cộng với công sai d1 + d2.
Ví dụ:
CSC (un): 1; 4; 7; 10; 13; 16; 19; …. có công sai d1 = 3 ;
CSC (vn): 4 ; 6 ; 8 ; 10 ; 12 ; 14 ; 16 … có công sai d2 = 2.
⇒ (an): 5; 10; 15; 20; 25; 30; 35; … có công sai d = 5.
Theo mình biết thì quy tắc L'Hospital nằm trong chương trình giải tích nâng cao. Với những bài bạn xem xét khó giải quyết được bằng kiểu thông thường thì cứ dùng thôi (mình lớp 11 chuyên vẫn được dùng), miễn sao đừng dùng nó kiểu lấy dao mổ trâu giết gà là được.
Quy tắc: Nếu hành động H gồm nhiều trường hợp thì số cách thực hiện hành động H bằng tổng số cách thực hiện từng trường hợp ấy.
Ví dụ:
Trên một bàn học có 4 cây bút chì và 3 cây bút mực. Có mấy cách chọn ra một cây bút?
+ Trường hợp chọn bút chì: có 4 cách chọn
+ Trường hợp chọn bút mực: có 3 cách chọn
Vậy theo quy tắc cộng có: 4 + 3 = 7 cách chọn.