Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=-x^3-2x^2+mx-3\)
\(f'\left(x\right)=-3x^2-4x+m\)
\(f'\left(x\right)>0\Leftrightarrow-3x^2-4x+m>0\Leftrightarrow m>3x^2+4x\)(đúng với mọi \(x\in\left(0,1\right)\))
suy ra \(m\ge max\left(3x^2+4x\right)\)với \(x\in\left[0,1\right]\).
Xét hàm \(g\left(x\right)=3x^2+4x\)với \(x\in\left[0,1\right]\).
\(g'\left(x\right)=6x+4\)
\(g'\left(x\right)=0\Leftrightarrow6x+4=0\Leftrightarrow x=-\frac{2}{3}\notin\left[0,1\right]\).
\(g\left(0\right)=0,g\left(1\right)=7\)
suy ra \(g_{max}=7\)
do đó \(m\ge7\).
Mà \(m\)nguyên, \(m\in\left[-2021,2021\right]\)nên có tổng cộng: \(2021-7+1=2015\)giá trị của \(m\)thỏa mãn.
Xét một điểm bất kỳ trên \(\Delta\text{ là }A\left(1,3\right)\)
Qua phép tính tiến (2,-2) thì điểm A biến thành \(A'\left(3,1\right)\)
mà tịnh tiến đường thẳng ta được đường song song với đường ban đầu nên
Vậy từ A' dựng đường song song với \(\Delta\text{ là }\Delta':-x-3y+6=0\)
sin(2x-40º) = 1 ⇔ 2x-40º = 90º + k360º ⇔ x = 65º + k180º
-180º < x < 180º ⇒ x=65º (k=0),x= -115º (k= -1) .
=>B
a, A= 23 - x - x + 46 + 2x - 43
A= 26
b, B = 4 + 2x + 76 - x - x - 99
B = -19
HT và $$$