Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ) x3 - 2x2 + x
= x( x2 - 2x + 1 )
= x ( x-1)2
2) 4x3 - 25x
= x ( 4x2 - 25)
= x( 2x-5) ( 2x +5)
11) \(x^2-y^2-4x+4\)
\(=\left(x^2-4x+4\right)-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-y-2\right)\left(x+y-2\right)\)
13) \(x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
3) \(x^2-7x+6=0\)
\(\Leftrightarrow x^2-6x-x+6=0\)
\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
S=\(\left\{6;1\right\}\)
\(\)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(a,3\left(x+4\right)-x^2-4x\)
\(=3\left(x+4\right)-\left(x^2+4x\right)\)
\(=3\left(x+4\right)-x\left(x+4\right)\)
\(=\left(3-x\right)\left(x+4\right)\)
\(a,3\left(x+4\right)-x^2-4x\)
\(=3\left(x+4\right)-\left(x^2+4x\right)\)
\(=3\left(x+4\right)-x\left(x+4\right)\)
\(=\left(3-x\right),\left(x+4\right)\)
a, \(4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)
\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=12\)
\(\Leftrightarrow8x=12\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy...
b, \(-3x\left(x-5\right)+5\left(x-1\right)+3x^2=4-x\)
\(\Leftrightarrow-3x^2+15x+5x-5+3x^2=4-x\)
\(\Leftrightarrow21x=9\)
\(\Leftrightarrow x=\dfrac{3}{7}\)
Vậy...
c, \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)
\(\Leftrightarrow x^2-9x+20-x^2+x+2=7\)
\(\Leftrightarrow-8x=-15\Leftrightarrow x=\dfrac{15}{8}\)
Vậy...
d, \(-\left(x+3\right)\left(x-4\right)+\left(x-1\right)\left(x+1\right)=10\)
\(\Leftrightarrow-x^2+x+12+x^2-1=10\)
\(\Leftrightarrow x=-1\)
Vậy...
e, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)
\(\Leftrightarrow x^3-27+5x-x^3=6x\)
\(\Leftrightarrow x=-27\)
Vậy...
a) \(4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)
\(4x^2-20x-7x^2+28x+3x^2-12=0\)
\(8x-12=0\)
\(4\left(2x-3\right)=0\)
\(2x-3=0\Rightarrow x=\dfrac{3}{2}\)
b) \(-3x\left(x-5\right)+5\left(x-1\right)+3x^2=4-x\)
\(-3x^2+15x+5x-5+3x^2-4+x=0\)
\(21x-9=0\)
\(3\left(7x-3\right)=0\)
\(\Rightarrow7x-3=0\Rightarrow x=\dfrac{3}{7}\)
c) \(\left(x-5\right)\left(x-4\right)-\left(x-1\right)\left(x-2\right)=7\)
\(x^2-4x-5x+20-x^2+2x+x-2-7=0\)
\(-6x+11=0\Rightarrow x=\dfrac{11}{6}\)
d) \(-\left(x-3\right)\left(x-4\right)+\left(x-1\right)\left(x+1\right)=10\)
\(-x^2+4x+3x-12+x^2-1-10=0\)
\(7x-23=0\)
\(x=\dfrac{23}{7}\)
e) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)
\(x^3-27+5x-x^3-6x=0\)
\(-x-27=0\Rightarrow x=-27\)