K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-\left(a^3+b^3+c^3\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

VẬY \(\left(a+b+c\right)^3-\left(a^3+b^3+c^3\right)=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

VẬY TA ĐÃ PHÂN TÍCH NHÂN TỬ XONG !!!!

10 tháng 10 2020

Ta có: \(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b-c\right)\left(b^2+bc+c^2\right)+bc^3-a^3b+a^3c-b^3c\)

\(=a\left(b-c\right)\left(b^2+bc+c^2\right)-bc\left(b-c\right)\left(b+c\right)-a^3\left(b-c\right)\)

\(=\left(b-c\right)\left(ab^2+abc+c^2a-b^2c-bc^2-a^3\right)\)

\(=\left(b-c\right)\left[c^2\left(a-b\right)-a\left(a-b\right)\left(a+b\right)+bc\left(a-b\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(c^2-a^2-ab+bc\right)\)

\(=\left(a-b\right)\left(b-c\right)\left[\left(c-a\right)\left(c+a\right)+b\left(c-a\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

13 tháng 8 2018

hgwhfehf2ihdqidkqfnefh2eifioe

12 tháng 9 2023

(a(b-c)^2 + b(c-a)^2 + c(a-b)^2) - (a^3 + b^3 + c^3) + 4abc

= a(b^2 - 2bc + c^2) + b(c^2 - 2ac + a^2) + c(a^2 - 2ab + b^2) - (a^3 + b^3 + c^3) + 4abc

= ab^2 - 2abc + ac^2 + bc^2 - 2abc + ba^2 + ca^2 - 2abc + cb^2 - a^3 - b^3 - c^3 + 4abc

= ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 - a^3 - b^3 - c^3 + 4abc - 6abc

= a(b^2 + c^2 + a^2) + b(a^2 + c^2 + b^2) + c(a^2 + b^2 + c^2) - (a^3 + b^3 + c^3) - 2abc

= a^3 + b^3 + c^3 + a^2b + ab^2 + a^2c + ac^2 + b^2c + bc^2 - a^3 - b^3 - c^3 - 2abc

= a^2b + ab^2 + a^2c + ac^2 + b^2c + bc^2 - 2abc

= ab(a + b) + ac(a + c) + bc(b + c) - 2abc

= (a + b)(ab - ac + bc) - 2abc

Vậy, ta có thể viết bài toán dưới dạng nhân tử là: (a + b)(ab - ac + bc) - 2abc.

a: \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b+c\right)^3-a^3\right]-\left(b^3+c^3\right)\)

\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+a\left(a+b+c\right)+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left[a^2+b^2+c^2+a^2+a^2+2ab+2bc+2ac+ab+ac-b^2+bc-c^2\right]\)

\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ac\right)\)

\(=3\left(b+c\right)\left(a+b\right)\left(a+c\right)\)

b: \(=\left(2x+2y+2z\right)^3-\left(x+y\right)^3-\left[\left(y+z\right)^3+\left(x+z\right)^3\right]\)

\(=\left(x+y+2z\right)\left[\left(2x+2y+2z\right)^2+2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\right]-\left(x+y+2z\right)\left[\left(y+z\right)^2-\left(y+z\right)\left(x+z\right)+\left(x+z\right)^2\right]\)

\(=3\left(x+y+2z\right)\left(x+z+2y\right)\left(y+z+2x\right)\)