K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2020

Ta có: \(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b-c\right)\left(b^2+bc+c^2\right)+bc^3-a^3b+a^3c-b^3c\)

\(=a\left(b-c\right)\left(b^2+bc+c^2\right)-bc\left(b-c\right)\left(b+c\right)-a^3\left(b-c\right)\)

\(=\left(b-c\right)\left(ab^2+abc+c^2a-b^2c-bc^2-a^3\right)\)

\(=\left(b-c\right)\left[c^2\left(a-b\right)-a\left(a-b\right)\left(a+b\right)+bc\left(a-b\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(c^2-a^2-ab+bc\right)\)

\(=\left(a-b\right)\left(b-c\right)\left[\left(c-a\right)\left(c+a\right)+b\left(c-a\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

9 tháng 10 2020

Câu 1:

\(a^3+a^2b-ab^2-b^3\)

\(=a^2\left(a+b\right)-b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-b^2\right)\)

\(=\left(a+b\right)\left(a-b\right)\left(a+b\right)\)

\(=\left(a+b\right)^2\left(a-b\right)\)

9 tháng 10 2020

Câu 2:

\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)+bc^3-a^3b+a^3c-b^3c\)

\(=a\left(b-c\right)\left(b^2+bc+c^2\right)-a^3\left(b-c\right)-bc\left(b-c\right)\left(b+c\right)\)

\(=\left(b-c\right)\left(ab^2+abc+c^2a-a^3-b^2c-bc^2\right)\)

\(=\left(b-c\right)\left[a\left(c-a\right)\left(c+a\right)-b^2\left(c-a\right)-bc\left(c-a\right)\right]\)

\(=\left(b-c\right)\left(c-a\right)\left(ca+a^2-b^2-bc\right)\)

\(=\left(b-c\right)\left(c-a\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

9 tháng 10 2020

Câu 1:

\(a^2+2ab+b^2-2a-2b+1\)

\(=\left(a+b\right)^2-2\left(a+b\right)+1\)

\(=\left(a+b-1\right)^2\)

9 tháng 10 2020

Câu 2:

Xét BToán \(x+y+z=0\Leftrightarrow x^3+y^3+z^3=3xyz\)

Mà \(\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)

\(\Rightarrow\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

31 tháng 7 2018

b, <=>(4x)3+13 

<=> (4x+1)( 16x2-4x+1)

c, <=> (x.y2.z3)3-53

<=> (xy2z3-5)( x2y4z6+5xy2z3+25)

d, <=> (3x2)3-(2x)3

<=> (3x2-2x)(9x4+6x3+4x2)

d, (x3)2- (y3)2 

= (x3+y3)(x3-y3)

Nick sv2 td 500tr sm ko đệ lấy ko

a. (x+2)(x+5)(x+3)(x+4)-24=(x^2+7x+10)(x^2+7x+12)-24

Đặt x^2+7x+10=a ta có:

a(a+2)-24=a^2+2a+1-25=(a+1)^2-25=(a+1+5)(a+1-5)=(a+6)(a-4)=(x^2+7x+10+6)(x^2+7x+10-4)=(x^2+7x+16)(x^2+7x+6)

18 tháng 1 2018

Từ gt

\(\Leftrightarrow\)(x+2)(x+5)(x+4)(x+3) - 24 =(x\(^2\)+ 7x+10)(x\(^2\)+7x+12)-24

Đặt x\(^2\)+ 7x+11=a

\(\Leftrightarrow\)(a-1)(a+1) -24

\(\Leftrightarrow\)a\(^2\)-1-24\(\Leftrightarrow\)a\(^{^2}\)-25\(\Leftrightarrow\)(a-5)(a+5) Thay a= x\(^2\)+7x+11 \(\Rightarrow\)kq

3 tháng 9 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt    \(t=x^2+7x+11\)

đến đây biến đổi theo t rồi thay trở lại

18 tháng 1 2018

Bạn cần để làm chi

18 tháng 1 2018

a, Nhóm (x+2)(x+5) và (x+3)(x+4) ta được 
A  = \(\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

- Đặt \(x^2+7x+11=a\)=> \(A=\left(x-1\right)\left(x+1\right)-24\)

                                                             \(=a^2-1-24\)

                                                              \(=\left(a-5\right)\left(a+5\right)\)

                                                               \(=\left(x^2-7x+6\right)\left(x^2-7x+16\right)\)

                                                                \(=\left(x-6\right)\left(x-1\right)\left(x^2-7x+16\right)\)