Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(a^3+a^2b-ab^2-b^3\)
\(=a^2\left(a+b\right)-b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)\)
\(=\left(a+b\right)\left(a-b\right)\left(a+b\right)\)
\(=\left(a+b\right)^2\left(a-b\right)\)
Câu 2:
\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)+bc^3-a^3b+a^3c-b^3c\)
\(=a\left(b-c\right)\left(b^2+bc+c^2\right)-a^3\left(b-c\right)-bc\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(ab^2+abc+c^2a-a^3-b^2c-bc^2\right)\)
\(=\left(b-c\right)\left[a\left(c-a\right)\left(c+a\right)-b^2\left(c-a\right)-bc\left(c-a\right)\right]\)
\(=\left(b-c\right)\left(c-a\right)\left(ca+a^2-b^2-bc\right)\)
\(=\left(b-c\right)\left(c-a\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
Câu 1:
\(a^2+2ab+b^2-2a-2b+1\)
\(=\left(a+b\right)^2-2\left(a+b\right)+1\)
\(=\left(a+b-1\right)^2\)
Câu 2:
Xét BToán \(x+y+z=0\Leftrightarrow x^3+y^3+z^3=3xyz\)
Mà \(\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)
\(\Rightarrow\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
b, <=>(4x)3+13
<=> (4x+1)( 16x2-4x+1)
c, <=> (x.y2.z3)3-53
<=> (xy2z3-5)( x2y4z6+5xy2z3+25)
d, <=> (3x2)3-(2x)3
<=> (3x2-2x)(9x4+6x3+4x2)
d, (x3)2- (y3)2
= (x3+y3)(x3-y3)
Nick sv2 td 500tr sm ko đệ lấy ko
a. (x+2)(x+5)(x+3)(x+4)-24=(x^2+7x+10)(x^2+7x+12)-24
Đặt x^2+7x+10=a ta có:
a(a+2)-24=a^2+2a+1-25=(a+1)^2-25=(a+1+5)(a+1-5)=(a+6)(a-4)=(x^2+7x+10+6)(x^2+7x+10-4)=(x^2+7x+16)(x^2+7x+6)
Từ gt
\(\Leftrightarrow\)(x+2)(x+5)(x+4)(x+3) - 24 =(x\(^2\)+ 7x+10)(x\(^2\)+7x+12)-24
Đặt x\(^2\)+ 7x+11=a
\(\Leftrightarrow\)(a-1)(a+1) -24
\(\Leftrightarrow\)a\(^2\)-1-24\(\Leftrightarrow\)a\(^{^2}\)-25\(\Leftrightarrow\)(a-5)(a+5) Thay a= x\(^2\)+7x+11 \(\Rightarrow\)kq
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(t=x^2+7x+11\)
đến đây biến đổi theo t rồi thay trở lại
a, Nhóm (x+2)(x+5) và (x+3)(x+4) ta được
A = \(\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
- Đặt \(x^2+7x+11=a\)=> \(A=\left(x-1\right)\left(x+1\right)-24\)
\(=a^2-1-24\)
\(=\left(a-5\right)\left(a+5\right)\)
\(=\left(x^2-7x+6\right)\left(x^2-7x+16\right)\)
\(=\left(x-6\right)\left(x-1\right)\left(x^2-7x+16\right)\)
Ta có: \(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=a\left(b-c\right)\left(b^2+bc+c^2\right)+bc^3-a^3b+a^3c-b^3c\)
\(=a\left(b-c\right)\left(b^2+bc+c^2\right)-bc\left(b-c\right)\left(b+c\right)-a^3\left(b-c\right)\)
\(=\left(b-c\right)\left(ab^2+abc+c^2a-b^2c-bc^2-a^3\right)\)
\(=\left(b-c\right)\left[c^2\left(a-b\right)-a\left(a-b\right)\left(a+b\right)+bc\left(a-b\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(c^2-a^2-ab+bc\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[\left(c-a\right)\left(c+a\right)+b\left(c-a\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)