Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(x^3-x+y^3-y\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
bài này hơi căng đêy
đề \(=ay^3-xy^3-ax^3+x^3y+a^3x-a^3y\)
\(=ay^3+a^2y^2-ax^2y-a^2xy-a^2y^2-a^3y+a^2x^2+a^3x-xy^3-axy^2+x^3y+ax^2y+axy^2+a^2xy-ax^3-a^2x^2\)
\(=ay\left(y^2+ay-x^2-ax\right)-a^2\left(y^2+ay-x^2-ax\right)-xy\left(y^2+ay-x^2-ax\right)+ax\left(y^2+ay-x^2-ax\right)\)
\(=\left(y^2+ay-x^2-ax\right)\left(ay-a^2-xy+ax\right)\)
\(=\left(y^2+xy+ay-xy-x^2-ax\right)\left[a\left(y-a\right)-x\left(y-a\right)\right]\)
\(=\left[y\left(y+x+a\right)-x\left(y+x+a\right)\right]\left(a-x\right)\left(y-a\right)\)
\(=\left(y+x+a\right)\left(y-x\right)\left(a-x\right)\left(y-a\right)\)
= (x +y)3 - ( x3+y3) = (x+y)(( x+y)2 - (x2 -xy +y2)) =3xy(x+y)
\(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x^3+y^3\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-\left(x^2-xy+y^2\right)\right]\)
\(=3xy\left(x+y\right)\)
~ rất vui vì giúp đc bn ~
Ta có
\(\left(x+y\right)^3-\left(x-y\right)^3=x^3+3x^2y+y^3-x^3+3x^2y-3xy^2+y^3\)
\(=6x^2y+2y^3=2y\left(3x^2+y^2\right)\)
\(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)=2y\left(3x^2+y^2\right)\)
\(x^3-x+y^3-y=\left(x^3+y^3\right)-\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
\(x^3-x+y^3-y=x^3+y^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
\(\)