K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

a. x3+y3+z3-3xyz

=(x3+3x2y+3xy2+y3)+z3+(-3xyz-3x2y-3xy2)

=((x+y)3+z3)-3xy(x+y+z)

=(x+y+z)((x+y)2-z(x+y)+z2)-3xy(x+y+z)

=(x+y+z)(x2+2xy+y2-zx-zy+z2-3xy)

=(x+y+z)(x2-xy+y2+z2-zx-zy)

b. (x2-8)2+36

=x4-16x2+64+36

=x4-16x2+100

=(x4+20x2+100)-36x2

=(x2+10)2-36x2

=(x2-6x+10)(x2+6x+10)

Chúc bạn học giỏi, k cho mình nhé!!!

2 tháng 8 2016

a)(x+y)2-(x-y)2

=(x+y-x+y)(x+y+x-y)

=2y.2x=4xy

b)(3x+1)2-(x+1)2

=(3x+1-x-1)(3x+1+x+1)

=2x.(4x+2)

=4x(2x+1)

c) x3+y3+z3-3xyz

= (x+y)3- 3xy(x+y) +z3-3xyz

=(x+y+z)( x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=(x+y+z)(x2+y2+z2-xy-xz-yz)

4 tháng 8 2016

Phân tích đa thức sau thành nhân tử :

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

b) \(x^3+y^3+z^3-3xyz\)

19 tháng 7 2018

\(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\)

\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3\)

\(=6a^2b+2b^3\)

\(=2b\left(3a^2+b^2\right)\)

19 tháng 7 2018

a/\(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=\left(a^3+3a^2b+3ab^2+b^3\right)-\left(a^3-3a^2b+3ab^2-b^3\right)\)\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^2\)

\(=6ab^2+2b^3\)(rút gọn hết)

b/\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-2xz+2xz+2xy-3xz-3yz-3xy\right).\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

Hok tốt

28 tháng 6 2018

1/ 

a, x2+36=12x

<=>x2-12x+36=0 

<=>(x-6)2=0

<=>x-6=0

<=>x=6

b, 5x(x-3)+3-x=0

<=>5x(x-3)-(x-3)=0

<=>(5x-1)(x-3)=0

<=>\(\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}}\)

2/ Sửa đề x2z2 = y2z2

Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)

\(=4\left(x^2+xy+xz\right)\left(x^2+xz+xy+yz\right)+y^2z^2\)

Đặt x2+xy+xz=t, ta có 

\(A=4t\left(t+yz\right)+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+y^2z^2\right)^2\ge0\)

8 tháng 10 2018

Đa thức trên tương đương với đa thức:

\(\left(xy\left(x+y\right)+xyz\right)+\left(yz\left(y+z\right)+xyz\right)+\left(xz\left(x+z\right)+xyz\right)\)

=\(xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+y+z\right)\)

=\(\left(x+y+z\right)\left(xy+yz+xz\right)\)

8 tháng 10 2018

xy(x + y) + yz( y + z )+ zx( z + x ) + 3xyz

=xy(x + y) + xyz + yz(y + z) + xyz + xz(x + z)+xyz

=zy(x + y + z) + yz(x + y + z) + xz(x + y + z)

=(x + y + z)(xy + yz + zx)

chúc bn hok tốt

22 tháng 6 2018

b  \(x^8y^8+x^4y^4+1=x^8y^8+2x^4y^4+1-x^4y^4=\left(x^4y^4\right)^2+2x^4y^4+1-\left(x^2y^2\right)^2\)

\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2=\left(x^4y^4-x^2y^2+1\right)\left(x^4y^4+x^2y^2+1\right)\)

c  \(x^2y+xy^2+xz^2+x^2z+y^2z+yz^2+2xyz=\left(x^2y+x^2z+xyz+xy^2\right)+\left(xz^2+yz^2+xyz+y^2z\right)\)

\(=x\left(xy+xz+yz+y^2\right)+z\left(xz+yz+xy+y^2\right)=\left(x+z\right)\left(xy+xz+yz+y^2\right)\)

\(=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)

a  \(3xyz+x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)=3xyz+xy^2+xz^2+x^2y+yz^2+x^2z+y^2z\)

\(=\left(x^2y+x^2z+xyz\right)+\left(xy^2+xyz+y^2z\right)+\left(xyz+xz^2+yz^2\right)\)

\(=x\left(xy+xz+yz\right)+y\left(xy+xz+yz\right)+z\left(xy+xz+yz\right)=\left(x+y+z\right)\left(xy+xz+yz\right)\)

4 tháng 8 2016

a)(a+b+c)3 - a3 - b3 - c3

= (a+b+c-a)( a2+b2+c2+2ab+2bc+2ac-a2-ab-ac+a2) - (b+c)(b2-bc+c2)

=(b+c)(a2+ab+ac+bc)

b) x3+y3+z3-3xyz

= (x+y)3-3xy(x+y) +z3-3xyz

= (x+y+z)(x2+y2+2xy-xz-yz+z2) - 3xy(x+y+z)

=(x+y+z)( x2+y2+z2-xy-yz-xz)

4 tháng 8 2016

câu a chưa pt hết kìa :V
a, 3(a+b)(b+c)(c+a)
có thẻ dùng hđt : (a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)

5 tháng 11 2016

Biến đổi : \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3\) theo công thức tổng của hai lập pương , ta được :

\(\left(y^2+z^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]\)

Thay vào \(A\),ta có : \(A=\left(y^2+z^2\right).B\).Trong đó :

\(B=\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)\right]+\left[\left(z^2-x^2\right)^2-\left(y^2+z^2\right)^2\right]\)

\(=\left[\left(x^2+y^2\right)\left(2x^2+y^2-z^2\right)\right]+\left[\left(2z^2-x^2+y^2\right)\left(-x^2-y^2\right)\right]\)

\(=\left(x^2+y^2\right)\left(3x^2-3z^2\right)\)

Vậy \(A=3\left(y^2+z^2\right)\left(x^2+y^2\right)\left(x^2-z^2\right)\).