Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình xin lỗi nhé, để mình sửa lại : ^^
a) \(x^4+3x^2+4=\left(x^4+x^3+2x^2\right)+-\left(x^3+x^2+2x\right)+2\left(x^2+2x+2\right)\)
\(=x^2\left(x^2+x+2\right)-x\left(x^2+x+2\right)+2\left(x^2+x+2\right)=\left(x^2-x+2\right)\left(x^2+x+2\right)\)
b) \(x^4+5x^2+9=\left(x^4+x^3+3x^2\right)-\left(x^3+x^2+3x\right)+3\left(x^2+x+3\right)\)
\(=x^2\left(x^2+x+3\right)-x\left(x^2+x+3\right)+3\left(x^2+x+3\right)=\left(x^2-x+3\right)\left(x^2+x+3\right)\)
\(x^3+5x^2+3x-9\)
\(=x^3-x^2+6x^2-6x+9x-9\)
\(=x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)=\left(x-1\right)\left(x+3\right)^2\)
\(x^{16}+x^8-2\)
\(=\left(x^{16}-1\right)+\left(x^8-1\right)\)
\(=\left(x^8-1\right)\left(x^8+1\right)+\left(x^8-1\right)\)
\(=\left(x^8-1\right)\left(x^8+2\right)\)
\(=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+2\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+2\right)\)
\(c,x^3+5x^2+3x-9\)
\(=x^3+6x^2+9-x^2-6x-9\)
\(=x\left(x^2+6x^2+9\right)-\left(x^2+6x^2+9\right)\)
\(=x.\left(x+3\right)^2-\left(x+3\right)^2\)
\(=\left(x+3\right)^2\left(x-1\right)\)
\(d,x^{16}+x^8-2\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4+1\right)^2-x^4\)
\(=\left(x^4+1+x^4\right)\left(x^4+1-x^4\right)\)
Sửa đề chút:
\(x^3+5x^2+3x-9\)
\(=\left(x^3-x^2\right)+\left(6x^2-6x\right)+\left(9x-9\right)\)
\(=x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x-1\right)\left(x+3\right)^2\)
hình như đề là x3-5x2+3x+9 mới đúng bn ạ
x3-5x2+3x+9= x3+x2-6x2-6x+9x+9
=x2(x+1)-6x(x+1)+9(x+1)
=(x+1)(x2-6x+9)
=(x+1)(x-3)2
\(3x^4-5x^3-18x^2-3x+5.\)
\(=3x^4-6x^3+x^3-15x^2-2x^2-x^2-5x+2x+5\)
\(=3x^4-6x^3-15x^2+x^3-2x^2-5x-x^2+2x+5\)
\(=\left(3x^4-6x^3-15x^2\right)+\left(x^3-2x^2-5x\right)-\left(x^2-2x-5\right)\)
\(=3x^2\left(x^2-2x-5\right)+x\left(x^2-2x-5\right)-\left(x^2-2x-5\right)\)
\(=\left(x^2-2x-5\right)\left(3x^2+x-1\right)\)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
x3+5x2+3x-9=x3+6x2+9x-x2-6x-9
=x(x2+6x+9)-(x2+6x+9)
=x.(x+3)2-(x+3)2
=(x+3)2.(x-1)