Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x5 + x4 + 1 = x5 - x3 - x2 - x4 + x2 + x + x3 - x - 1
= x2 ( x3 - x - 1 ) - x ( x3 - x - 1 ) + 1 ( x3 - x - 1 )
= ( x3 - x - 1 ) ( x2 - x + 1 )
\(x^8+x^4+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x+1\right)\)
\(x^5-x^4-1\)
\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)
\(=\left(x^5-x^4+x^3\right)-\left(x^3-x^2+x\right)-\left(x^2-x+1\right)\)
\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
Ta có:
\(x^7+x^5+1=x.x.x.x.x.x.x+x.x.x.x.x+1\)
\(=x.x.x.x.x\left(x.x+1\right)\)
Kết quả như vậy phải không. Mình chưa học mới xem sơ thôi. Nếu sai bạn đừng trách.
\(A=x^5+x+1=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(A=x^4+x^2+1\)
\(=x^4-x+x^2+x+1\)
\(=x\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
x5+x4+1=x5+x4+x3+x2+x+1-x3-x2-x
=x3.(x2+x+1)+(x2+x+1)-x.(x2+x+1)
=(x2+x+1)(x3-x+1)
Ta có:
\(x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\)
\(=\left(x^9-x^8\right)+\left(x^8-x^7\right)-\left(x^6-x^5\right)-\left(2x^5-2x^4\right)-\left(x^4-x^3\right)+\left(x^2-x\right)+\left(x-1\right) \)
\(=x^8.\left(x-1\right)+x^7.\left(x-1\right)-x^5.\left(x-1\right)-2x^4.\left(x-1\right)-x^3\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^8+x^7-x^5-2x^4-x^3+x+1\right)\)
\(A=x^5+x^4+1\)
\(A=x^5+x^4+x^3+1-x^3\)
\(A=x^3.\left(x^2+x+1\right)+\left(1-x\right).\left(x^2+x+1\right)\)
\(A=\left(x^3-x+1\right).\left(x^2+x+1\right)\)