K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

a,  x2+2xy+y2+2x+2y-15

<=> (x+y )2+2(x+y)+1-16

Đặt x+y =a

<=> a2+2a+1-42

<=> (a+1)2-42

<=> (a+5)(a-3) =>( x+y+5)(x+y-3)

b, x2-4xy+4y2-2x-4y-35

<=> (x-2y)2-2(x-2y)+1-36

Đặt (x-2y)  =b 

=> b2-2b+1-62

<=> (b-1)2-62

<=> (b-7)(b+5)=> (x-2y-7)(x-2y+5)

c, 

26 tháng 7 2018

a,A= x^2+2xy+y^2+2x+2y-15

= (x+y)^2+(x+y)-15

Đặt x+y=a, ta có:

A=a^2+2a-15

  =a^2+2a+1-16

  =(a+1)^2-4^2

  =(a+1+4)(a+1-4)

  =(a+5)(a-3)

Thay a=x+y, ta có: A=(x+y+5)(x+y-3).

18 tháng 9 2016

Giúp mình vs

5 tháng 7 2019

a) \(x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)

Vậy tập nghiệm \(S=\left\{-4;0;4\right\}\)

5 tháng 7 2019

b) \(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^3+10x\right)\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x^2+10\right)\left(x-2\right)=0\)

Mà \(x^2+10>0\)nên \(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy tập nghiệm S = { 0;2}

28 tháng 7 2018

1.

\(\frac{25x^4y^3-15x^3y^5+20x^2y^4}{5x^2y^3}\)

\(=\frac{5x^2y^3\left(5x^2-3xy^2+4y\right)}{5x^2y^3}\)

\(=5x^2-3xy^2+4y\)

2.

a)  \(27x^4-8x=x\left(27x^3-8\right)\)

\(=x\left(3x-2\right)\left(9x^2+6x+4\right)\)

b)  \(16x^2y-4xy^2-4x^3+x^2y\)

\(=4xy\left(4x-y\right)-x^2\left(4x-y\right)\)

\(=x\left(4x-y\right)\left(4y-x\right)\)

c) \(x^2-2x-5+2\sqrt{5}\)

\(=\left(x-1\right)^2-6+2\sqrt{5}\)

\(=\left(x-1\right)^2-\left(6-2\sqrt{5}\right)=\left(x-1\right)^2-\left(\sqrt{5}-1\right)^2\)

\(=\left(x-\sqrt{5}\right)\left(x-2+\sqrt{5}\right)\)

28 tháng 7 2018

Bài 1:

 \(\left(25x^4y^3-15x^3y^5+20x^2y^4\right):\left(5x^2y^3\right)\)

\(=\frac{25x^4y^3-15x^3y^5+20x^2y^4}{5x^2y^3}\)

\(=\frac{5x^2y^3\left(5x^2-3xy^2+4y\right)}{5x^2y^3}\)

\(=5x^2-3xy^2+4y\)

Bài 2: 

a) \(27x^4-8x\)

\(=x\left(3x-2\right)\left(3^2x^2+2.3x+2^2\right)\)

\(=x\left(3x-2\right)\left(9x^2+6x+4\right)\)

b) \(16x^2y-4xy^2-4x^3+x^2y\)

\(=4y^2+x^2-\left(4x^2\right)^2\)

\(=x\left(-4x^2+xy+4y^2\right)\)

18 tháng 8 2020

WTF đăng một loạt vầy ai dám làm @@

Mấy bài này trong sách bài tập cx có bài mẫu

tự lật sách ra học ik , đăng 1 loạt ai giải cho chép zô hết

26 tháng 6 2016

\(a,x^2-y^2-2x+2y=\left(x^2-y^2\right)-\left(2x-2y\right)=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right).\) \(b,2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(x+y\right)\left(2-x\right)\)

\(c,3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)=3.\left(\left(a-b\right)^2-\left(2c\right)^2\right)\)

                                                     \(=3\left(a-b-2c\right).\left(a-b+2c\right)\)

\(d,x^2-25+y^2-2xy=\left(x^2-2xy+y^2\right)-5^2=\left(x-y\right)^2-5^2\)

                                           \(=\left(x-y+5\right)\left(x-y-5\right)\)

\(e,a^2+2ab+b^2-ac-bc=\left(a+b\right)^2-c\left(a+b\right)=\left(a+b\right)\left(a+b-c\right)\)

\(f,x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

                                         \(=\left(x+2y\right)\left(x-2y-2\right)\)

\(h,x^2\left(x-1\right)+16\left(1-x\right)=x^2\left(x-1\right)-16\left(x-1\right)=\left(x-1\right)\left(x^2-16\right)=\)

                                                    \(=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)

5 tháng 7 2017

a) Ta có : x2 - y2 - 2x + 2y

= (x2 - y2) - (2x - 2y)

= (x - y)(x + y) - 2(x - y)

= (x - y)(x + y - 2)

5 tháng 7 2017

a, x2 - y2 - 2x + 2y

= ( x2 - y2 ) - ( 2x - 2y )

= ( x - y ).( x + y ) - 2.( x - y )

= ( x - y ).( x + y - 2 )