Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Thay (y-x)2 bằng (x-y)2, sau đó đặt nhân tử
e)Nhóm 3 số cuối vào 1 nhóm
f)Áp dụng HĐT thứ 3 bình thường
a. x4+4y4
= (x2)2+(2y2)2
= (x2)2+4x2y2+(2y2)2-4x2y2
= (x2+y2)2-(2xy)2
= (x2+2y2-2xy)(x2+2y2+2xy)
b/
b1: nhập phương trình vào mấy ấn shift solve gán x=-10
ra 1,3068........
ấn shift solve gán x=-10
ra 1
ấn shift solve gán x=0
ra 1
=> phương trình có 1 nhân tử là (x-1)
ta lấy phương trình chia cho (x-1)
gán x=1000
ra 4005004976\(\approx\)4x3
ta trừ 4x3
ra 5004976\(\approx\)5x2
trừ đi 5x2
ra 4976\(\approx\)5x
trừ 5x
ra -24
cộng cho 24
=>x3+4x4-29x+24=(x-1)(4x35x2+5x-24)
b, <=>(4x)3+13
<=> (4x+1)( 16x2-4x+1)
c, <=> (x.y2.z3)3-53
<=> (xy2z3-5)( x2y4z6+5xy2z3+25)
d, <=> (3x2)3-(2x)3
<=> (3x2-2x)(9x4+6x3+4x2)
d, (x3)2- (y3)2
= (x3+y3)(x3-y3)
a) ktra lại đề
b) \(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]\)
\(=3\left(x+y+z\right)\left(x+y-z\right)\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2=\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\)
d) \(2x^2+4x-2-2y^2=2\left(x^2-y^2+2x-1\right)\)
e) \(2xy-x^2-y^2+16=16-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x-y\right)\)
f) \(2x-2y-x^2+2xy-y^2=2\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(2-x+y\right)\)
g) \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)-4x^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
h) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2+x+1\right)\)
a/ \(x^2-4x+3=\left(x^2-x\right)-\left(3x-3\right)=x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(x-3\right)\)
b/ \(3x^2-5x+2=\left(3x^2-3x\right)-\left(2x-2\right)=3x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(3x-2\right)\)
2x2 + 2y2 + b2 + 3xy - bx - by = 0
<=> 4x2 + 4y2 + 2b2 + 6xy - 2bx - 2by = 0
<=> (x2 - 2bx + b2) + (y2 - 2by + y2) + (3x2 + 6xy + 3y2) = 0
<=> (x - b)2 + (y - b)2 + 3(x + y)2 = 0
Ta thấy VT > 0 nên không có nghiệm.
PS: Không phải phân tích nhân tử mà là giải phương trình nhé.
=4(x-y) +(x-y)^2 =(x-y)(x-y+4)
TL:
\(4x-4y+x^2-2xy+y^2\)
\(=4\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(4+x-y\right)\left(x-y\right)\)