Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử
= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung
= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung
a) 2x(y-z)-6y(z-y)
=2x(y-z)+6y(y-z)
=2(y-z)(x+3y)
b)x^2+4x-4y-y^2
=x^2-y^2+4x-4y
=(x-y)(x+y)+4(x-y)
=(x-y)(x+y+4)
P/s tham khảo nha
Cách 1: \(x^2-2xy+y^2+4x-4y-5=\left(y^2-xy+y\right)+\left(-xy+x^2-x\right)+\left(-5y+5x-5\right)\)
\(=y\left(y-x+1\right)-x\left(y-x+1\right)-5\left(y-x+1\right)=\left(y-x+1\right)\left(y-x-5\right)\)
Cách 2: \(x^2-2xy+y^2+4x-4y-5=\left(x^2+y^2+2^2-2xy+4x-4y\right)-9\)
\(=\left(y-x-2\right)^2-3^2=\left(y-x-2-3\right)\left(y-x-2+3\right)=\left(y-x-5\right)\left(y-x+1\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)+4-9\)
\(=\left(x-y+2\right)^2-9\)
\(=\left(x-y+2\right)^2-3^2\)
\(=\left(x-y-1\right)\left(x-y+5\right)\)
nhớ nha
\(x^2-2xy+y^2+4x-4y-5\)
\(=\left(x-y\right)^2+4\left(x-y\right)+4-9\)
\(=\left(x-y+2\right)^2-9\)
\(=\left(x-y+2-3\right)\left(x-y+2+3\right)\)
\(=\left(x-y-1\right)\left(x-y+5\right)\)
\(x^2-2xy+y^2+4x-4y-5\)
\(=\left(x-y\right)^2-1+4\left(x-y-1\right)\)
\(=\left(x-y+1\right)\left(x-y-1\right)+4\left(x-y-1\right)\)
\(=\left(x-y-1\right)\left(x-y+1+4\right)\)
\(=\left(x-y-1\right)\left(x-y+5\right)\)
s) = ( x2 - 2xy + y2 ) - ( 2xy )2 = ( x - y - 2xy )( x - y + 2xy )
u) sửa +4y thành -4y
= 4( x - y ) - x2( x - y ) = ( x - y )( 2 - x )( 2 + x )
5x2 - 5xy + 4y - 4x
= 5x ( x - y ) - 4 ( x - y )
= ( 5x - 4 ) ( x - y )
( x + y )3 + ( x - y )3
= 2x3 + 6xy2
= 2x ( x2 + 3y2 )
5 x^2 - 5xy + 4y - 4x
= 5x ( x - y ) - 4 ( x - y )
= ( x - y ) ( 5x - 4 )
( x + y )^3 + ( x - y )^3
= \(x^3+3x^2y+3xy^2+y^3+x^3-3x^2y+3xy^2-y^3\)
= \(2x^3+6xy^2\)
=\(2x\left(x^2+3y^2\right)\)
Ta có: 4x2 - y2 + 4x + 4y - 3
= (4x2 - 4x + 1) - (y2 - 4y + 4)
= (2x - 1)2 - (y - 2)2
= (2x - 1 -y + 2)(2x - 1 + y - 2)
= (2x - y + 1)(2x + y - 3)
\(4x^2-y^2+4x+4y-3\)
\(=\left(4x^2+4x+1\right)-\left(y^2-4y+4\right)\)
\(=\left(2x+1\right)^2-\left(y-2\right)^2\)
\(=\left(2x+1+y-2\right)\left(2x+1-y+2\right)\)
\(=\left(2x+y-1\right)\left(2x-y+3\right)\)
\(=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)=\left(x-y\right)\left(x+y-4\right)\)