Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a+b-2c=x,b+c-2a=y,c+a-2b=z\)
\(\Rightarrow x+y+z=0\)
Chắc bạn biết: \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
Vậy \(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3=3\left(a+b-2c\right)\left(b+c-2a\right)\left(c+a-2b\right)\)
Chúc bạn học tốt.
Lời giải:
$N=p^{m+2}q-pq^{m+3}-p^{m+3}q^{n+4}$
$=pq(p^{m+1}-q^{m+2}-p^{m+2}q^{n+3})$
\(p^{m+2}.q-p^{m+1}.q^3-p^2.q^{n+1}+p.q^{n+3}\)
\(=pq\left(p^{m+1}-p^mq^2-pq^n+q^{n+2}\right)\)
\(=p^m\left(p-q^2\right)-q^n\left(p-q^2\right)\)
\(=\left(p-q^2\right)\left(p^m-q^n\right)\)
..........
\(a^3+a^2c-abc+b^2c+b^3\)
\(=\left(a^3+b^3\right)+\left(a^2c+b^2c-abc\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+\)\(c\left(a^2+b^2-ab\right)\)
\(=\left(a^2+b^2-ab\right)\left(a+b+c\right)\)
a) = pq(pm+1 - pm - pq2n+3)
b) = (m-3)2 - (x - 2y)2
= ( m-3 +x -2y)(m-3 -x +2y)
xin lỗi mình chép sai đề, mình vừa mới sửa lại phiền bạn làm lại giùm mình
a) \(x^5+x+1=\left(x^5+x+1\right)=x\left(x^4+1+\frac{1}{x}\right)\)
b) và c) Tương tự nha
Chả biết đúng hay sai :v tại dùng máy tính tính ra kết quả rồi phân tích ngược lại
a) \(x^5+x+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)+x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x-1\right)\)
b)\(x^4+2002x^2+2001x+2002=x^4+x^3+1-x^3+x^2+x+2002x^2+2002x+1\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2002\left(x^2+x+1\right)\)
\(=\left(x^2-x+2002\right)\left(x^2+x+1\right)\)
c)Tương tự câu a),ta phân tích được:
\(x^{11}+x^7+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^4+x^3-x+1\right)\)
Đúng là hok sinh giỏi có khác ,bài toán nó cũng khó
Ta có:
\(p^{m+2}q-p^{m+1}q^3-p^2q^{n+1}+pq^{n+3}\)
\(=\left(p^{m+2}q-p^{m+1}q^3\right)-\left(p^2q^{n+1}-pq^{n+3}\right)\)
\(=p^{m+1}q\left(p-q^2\right)-pq^{n+1}\left(p-p^2\right)\)
\(=\left(p-p^2\right)\left(p^{m+1}q-pq^{n+1}\right)\)
\(=pq\left(p-p^2\right)\left(p^m-p^n\right)\)