K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

Nhiều quá cho đáp số thôi nhé

a/ \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1=\left(x^2-7x+11\right)^2\)

b/ \(x^4+2015x^2+2014x+2015=\left(x^2-x+2015\right)\left(x^2+x+1\right)\)

c/ \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

d/ \(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2=\left(x-1\right)^2\left(x^2-5x+1\right)\)

e/ \(12x^3+16x^2-5x-3=\left(2x-1\right)\left(2x+3\right)\left(3x+1\right)\)

5 tháng 3 2017

a) \(A=\left(x-2\right)x-3\left(x-4\right)\left(x-5\right)+1=\left[\left(x-2\right)\left(x-5\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+1\)

\(A=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1=\left(y+1\right)\left(y-1\right)+1\)

\(A=y^2-1+1=y^2=\left(x^2-7x+11\right)^2\)

5 tháng 3 2017

b) đề --> bản chất không sai--> không hợp lý--> sửa

c)

Không thuộc 7-HĐT:-> bạn chịu khó nội suy từ HĐT thứ 6: [A+B]^3--> với A=x ; ___B=(x+y)--> đáp số:\(x^3+y^3+z^3-3xzy=\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+xz+yz\right)\right]\)

hoặc:

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right]\)

10 tháng 2 2018

a, = [(x-2).(x+1)]^2+(x-2)^2

    = (x-2)^2.(x+1)^2+(x-2)^2

    = (x-2)^2.[(x+1)^2+1]

    = (x-2)^2.(x^2+2x+2)

Tk mk nha

10 tháng 2 2018

b)  \(6x^5+15x^4+20x^3+15x^2+6x+1\)

\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)

\(=\left(2x+1\right)\left(3x^4+6x^3+7x^2+4x+1\right)\)

\(=\left(2x+1\right)\left(3x^4+3x^3+3x^2+3x^3+3x^2+3x+x^2+x+1\right)\)

\(=\left(2x+1\right)\left(x^2+x+1\right)\left(3x^2+3x+1\right)\)

3 tháng 12 2017

Bài a) nhóm thành 2 nhóm; nhóm thứ nhất gồm số hạng đầu và cuối

bài b) dùng hằng đẳng thức là đc rồi

3 tháng 12 2017

a,Ta có: \(x^3-4x^2-12x+27=x^3+3x^2-7x^2-21x+9x+27=x^2(x+3)-7x(x+3)+9(x+3)=(x+3)(x^2-7x+9)\)b,

\(25(x-y)^2-16(x+y)^2=(5x-5y+4x+4y)(5x-5y-4x-4y)=(9x-y)(x-9y)\)c,\(x^4+x^3+x+1=x^3(x+1)+(x+1)=(x^3+1)(x+1)=(x+1)^2(x^2-x+1)\)d, \(x(x+1)^2+x(x-5)-5(x+1)^2=(x+1)^2(x-5)+x(x-5)=(x-5)(x^2+3x+1)\)e,\(x^2-x-6=x^2-3x+2x-6=x(x-3)+2(x-3)=(x-3)(x+2)\)f,\(x^3-19x-30=x^3-5x^2+5x^2-25x+6x-30=(x-5)(x^2+5x+6)=(x-5)(x^2+2x+3x+6)=(x-5)(x+2)(x+3)\)

3 tháng 12 2017

nãy bài 1 mk gửi thiếu 1 ý

\(x^2y+xy^2-x+y\)

có ai giúp mk ý này k

bài 2 thì k cần lm cũng đc nhé vì mk biết làm rùi còn mỗi ý này thui hu hu

11 tháng 2 2018

a) \(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)

\(=x^4+x^2+4-2x^3-4x+4x^2+x^2-4x+4\)

\(=x^4-2x^3+6x^2-8x+8\)

\(=x^4-2x^3+2x^2+4x^2-8x+8\)

\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)\)

\(=\left(x^2+4\right)\left(x^2-2x+2\right)\)

b) \(6x^5+15x^4+20x^3+15x^2+6x+1\)

\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)

\(=3x^4\left(2x+1\right)+6x^3\left(2x+1\right)+7x^2\left(2x+1\right)+4x\left(2x+1\right)+2x+1\)

\(=\left(2x+1\right)\left(4x^4+6x^3+7x^2+4x+1\right)\)

\(=\left(2x+1\right)\left(3x^4+3x^3+3x^2+3x^3+3x^2+3x+x^2+x+1\right)\)

\(=\left(2x+1\right)\left[\left(3x^2\right)\left(x^2+x+1\right)+3x\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]\)

\(=\left(2x+1\right)\left(x^2+x+1\right)\left(3x^2+3x+1\right)\)

16 tháng 7 2019

\(x^5+y^5-\left(x+y\right)^5\)

\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+8xy^4+y^5\right)\)

\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

\(=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)

\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)

Bài 1:Tínha) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(1-x\right)\left(1+x+x^2\right)\)b) \(7x\left(4x-2\right)-\left(x-3\right)\left(x+1\right)+16x\)c) \(A=\frac{x^2-6xy+9y^2}{x^2-9y^2}\)d) \(B=\frac{8}{x^2+4x}+\frac{5}{x+4}-\frac{2}{x}\)Bài 2:Phân tích đa thức thành nhân tửa) \(x^2-3x-15\)b) \(x^2-9x+4\)c) \(x^2-12x+32\)d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)e) \(x^4-2x^3-3x^2-4x-1\)f) \(x^3+x^2-x+2\)Bài 3: Cho x,y là các số thực...
Đọc tiếp

Bài 1:Tính

a) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(1-x\right)\left(1+x+x^2\right)\)

b) \(7x\left(4x-2\right)-\left(x-3\right)\left(x+1\right)+16x\)

c) \(A=\frac{x^2-6xy+9y^2}{x^2-9y^2}\)

d) \(B=\frac{8}{x^2+4x}+\frac{5}{x+4}-\frac{2}{x}\)

Bài 2:Phân tích đa thức thành nhân tử

a) \(x^2-3x-15\)

b) \(x^2-9x+4\)

c) \(x^2-12x+32\)

d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

e) \(x^4-2x^3-3x^2-4x-1\)

f) \(x^3+x^2-x+2\)

Bài 3: Cho x,y là các số thực sao cho \(x+y\);\(x^2+y^2\);\(x^4+y^4\)là các số nguyên.CMR: \(2x^2y^2\)và \(x^3+y^3\)là các số nguyên

Bài 4: Rút gọn phân thức:

a) \(\frac{x^3+y^3+z^3\cdot3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

b) \(\frac{x^4-2x^2+1}{x^3-3x-2}\)

Bài 5:Cho \(abc=1\)

Tính giá trị của biểu thức \(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

Đề thi bắt đầu đến 11 h kế thúc có 1 giải 1 và 2 giải 2 thui nha cố lên nào giải 3 vô hạn nhưng trên 5 điểm

 

11
14 tháng 9 2019

a. \(=x^3+2^3+1^3-x^3\)

\(=\left(x^3-x^3\right)+8+1\)

\(=0+8+1\)

\(=9\)

14 tháng 9 2019

Bài 1 :

a) ( x + 2 )( x2 - 2x + 4 ) + (1 - x)(1+x+ + x2 )

= ( x3 - 8 ) + ( 1 - x3 )

= x3 - 8 + 1 - x3

= 7

b) 7x( 4x - 2) - ( x - 3)( x+1 ) + 16x

= 28x2 - 14x - x2 - x + 3x + 3 + 16x

= 27x2  + 3