Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3a2-6ab+3b2-12c2
=3.(a2-2ab+b2-4c2)
=3.[(a-b)2-4c2]
=3.(a-b-2c)(a-b+2c)
\(5x^2y^3-25x^2y^2+10x^2y^4=5x^2y^2\left(y-5+2y^2\right)\)
\(12a^4-24a^2b^2-6ab=6a\left(2a^3-4ab^2-3b\right)\)
mk chỉnh đề
\(-25x^6-y^8+10x^3y^4=-\left(5x^3-y^4\right)^2\)
\(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)
1) ta có : \(x^2-4-6xy+9y^2=\left(x-3y\right)^2-2^2=\left(x-3y+2\right)\left(x-3y-2\right)\)
2) ta có : \(9a^2+6ab+b^2-49x^2=\left(3a+b\right)^2-\left(7x\right)^2=\left(3a+b-7x\right)\left(3a+b+7x\right)\)
3) ta có : \(b^4+4a^4=b^4+4a^2b^2+4a^4-4a^2b^2=\left(b^2+2a^2\right)^2-\left(2ab\right)^2\)
\(=\left(b^2+2a^2-2ab\right)\left(b^2+2a^2+2ab\right)\)
a)\(81x^2-6yz-9y^2-z^2\)
\(=81x^2-\left(z-3y\right)^2\)
\(=\left(9x-z+3y\right)\left(9x+z-3y\right)\)
b)\(x^2y-x^3-9y+9x\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
c)\(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4z^2\right)\)
\(=3\left[\left(a-b\right)^2-4z^2\right]\)
\(=3\left(a-b-2z\right)\left(a-b+2z\right)\)
a)\(81x^2-6yz-9y^2-z^2=\left(9x\right)^2-\left(9y^2+6yz+z^2\right)=\left(9x\right)^2-\left(3y+z\right)^2=\left(9x-3y-z\right)\left(9x+3y+z\right)\)b)\(x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x^2-9\right)\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)
c)\(3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)
\(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
\(x^6-x^4-9x^3+9x^2\)
\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=x^2\left(x-1\right)\left[x^2\left(x+1\right)-9\right]\)
\(=x^2\left(x-1\right)\left(x^3+x^2-9\right)\)
\(x^4-4x^3+8x^2-16x+16\)
\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)\)
\(=\left(x^2+4\right)\left(x^2+4-4x\right)\)
\(=\left(x^2+4\right)\left(x-2\right)^2\)
\(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4c^2\right)\)
\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)
\(=3\left(a-b+2c\right)\left(a-b-2c\right)\)
Phân tích đa thức thành nhân tử
a. 3ab ( x+ y) - 6ab ( y+ x)
=( x + y) ( 3ab - 6ab )
= ( x +y ) ( - 3ab)
b.7a (x - 3)+a2(x2 - 9)
=7a( x- 3) + a2 ( x2 - 32)
=7a ( x - 3 ) + a2 ( x- 3 ) ( x+3 )
= ( x- 3) . 7a + a2 ( x + 3)
= ( x- 3) ( 7a +a2x + 3a2)
c. 34 (x + y) -x -y
= 34 ( x+ y) - ( x+y)
=(x +y ) ( 34 - 1) = 33 ( x+ y)
d. 25 x4 - 942
=( 5x2 )2 - 942
=( 5x2 - 94 ) ( 5x2+94)
e.( 5a - b )2 - ( 2a +3b)2
=( 5a -b -2a - 3b) (5a -b + 2a + 3b)
=(3a - 4b) (7a+ 2b)
k. 22 -3a - b2 +3b
=( 22 - b2 ) + ( -3a +3b)
=( 2-b) (2+b) + 3( -a +b)
= 2( a^3 + b^3 ) + 7ab(a+b) = 2(a+b)(a^2 -ab +b^2) + 7ab(a+b) = (a+b) ( 2a^2 - 2ab + 2b^2 - 7ab)
=(a +b ) ( 2a^2 +2b^2 - 9ab)
\(P = 2a^3 + 7a^2b + 7ab^2 + 2b^3\)
\(=2a^3+2a^2b+5a^2b+5ab^2+2ab^2+2b^3\)
\(=2a^2(a+b)+5ab(a+b)+2b^2(a+b) \)
\(=(2a^2+5ab+2b^2)(a+b)\)
\(=(2a^2+4ab+ab+2b^2)(a+b)\)
\(=[2a(a+2b)+b(a+2b)](a+b)\)
\(=(2a+b)(2b+a)(a+b)\)
P=2a3+7a2b+7ab2+2b3
=2a3+2a2b+5a2b+5ab2+2ab2+2b2
=(2a3+2a2b)+(5a2b+5ab2)+(2ab2+2b3)
=2a2(a+b)+5ab(a+b)+2b2(a+b)
=(a+b)(2a2+5ab+2b2)
=(a+b)[2a2+4ab+ab+2b2]
=(a+b)[2a(a+2b)+b(a+2b)]
=(a+b)(2a+b)(a+2b)
a/ 9a^3 - 13a + 6 = 9a^3 - 6a^2 + 6a^2 - 4a - 9a + 6 = (9a^3 - 6a^2) + (6a^2 - 4a) - (9a - 6) = 3a^2(3a - 2) + 2a(3a - 2) - 3(3a - 2) = (3a^2 + 2a - 3)(3a - 2) Mình gửi luôn cho nóng^^Được câu nào hay câu đó. Yên tâm mình sẽ cố nghĩ &gửi nốt :)))
b/x^4 - 4x^3 + 8x + 3 = x^4 - 3x^3 - x^3 + 3x^2 - 3x^2 + 9x - x + 3 = (x^4 - 3x^3) - (x^3 - 3x^2) - (3x^2 - 9x) - (x - 3) = x^3(x - 3) - x^2(x - 3) - 3x(x - 3) - (x - 3) = (x^3 - x^2 - 3x - 1)(x - 3) Mình đang cố nghĩ nốt con c đây, có vẻ khó^^
\(=b\left(9a^2+6ab+b^2\right)-2b\left(3a+b\right)\)
\(=b\left(3a+b\right)^2-2b\left(3a+b\right)\)
\(=b\left(3a+b\right)\left(3a+b-2\right)\)
\(9a^2b+6ab^2+b^3-6ab-2b^2\)
\(=b\left(9a^2+6ab+b^2-6a-2b\right)\)
\(=b\left[\left(3a+b\right)^2-2\left(3a+b\right)\right]\)
\(=b\left(3a+b\right)\left(3a+b-2\right)\)