Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x5 + x4 + 1 = x5 - x3 - x2 - x4 + x2 + x + x3 - x - 1
= x2 ( x3 - x - 1 ) - x ( x3 - x - 1 ) + 1 ( x3 - x - 1 )
= ( x3 - x - 1 ) ( x2 - x + 1 )
Đa thức có dạng \(x^{3a+1}+x^{3b+2}+1\) thì đưa về dạng \(\left(x^2+x+1\right)\cdot P\left(x\right)\) bạn nhé!
Bài làm:
\(x^5+x+1\)
\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1^3\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(x^5+x+1=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2\left(x-1\right)+1\right)\)
\(x^5+x^4-x^3+x^2-x+2\)
\(=x^5-x^4+x^3-x^2+x+2x^4-2x^3+2x^2-2x+2\)
\(=x\left(x^4-x^3+x^2-x+1\right)+2\left(x^4-x^3+x^2-x+1\right)\)
\(=\left(x+2\right)\left(x^4-x^3+x^2-x+1\right)\)
Ta có:
\(x^5+x-1=\left(x^5+x^2\right)-\left(x^2-x+1\right)=x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)
mình chỉ phân tích được đa thức này thôi!
\(x^4+x^2+1\)
\(=x^4+2x^2-x^2+1\)
\(=\left(x^4+2x^2+1\right)-x^2\)
\(=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
\(x^5+x+1\)
\(\Leftrightarrow\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(\Leftrightarrow x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
Tk nka !!
\(x^5+x+1=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)