Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x5 + x4 + 1 = x5 - x3 - x2 - x4 + x2 + x + x3 - x - 1
= x2 ( x3 - x - 1 ) - x ( x3 - x - 1 ) + 1 ( x3 - x - 1 )
= ( x3 - x - 1 ) ( x2 - x + 1 )
Ta có :
\(x^2\left(x^4-1\right)\left(x^2+1\right)+1=x^2\left(x^2-1\right)\left(x^2+1\right)\left(x^2+2\right)+1\)
\(\Leftrightarrow x^2\left(x^2+1\right)\left(x^2-1\right)\left(x^2+2\right)+1=\left(x^4-x^2\right)\left(x^4+x^2-2\right)+1\)
Gọi \(x^4-x^2\) là t, ta có:
t(t-2)+1=\(t^2-2t+1=\left(t-1\right)^2=\left(x^4+x^2-1\right)^2\)
\(x^2\left(x^2+4\right)-x^2+4\)
\(=x^4+4x^2-x^2+4\)
\(=x^4+3x^2+4\)
\(=x^4-x^3+x^3+2x^2+2x^2-x^2-2x+2x+4\)
\(=\left(x^4-x^3+2x^2\right)+\left(x^3-x^2+2x\right)+\left(2x^2-2x+4\right)\)
\(=x^2\left(x^2-x+2\right)+x\left(x^2-x+2\right)+2\left(x^2-x+2\right)\)
\(=\left(x^2+x+2\right)\left(x^2-x+2\right)\)
\(x^5+x^4-x^3+x^2-x+2\)
\(=x^5-x^4+x^3-x^2+x+2x^4-2x^3+2x^2-2x+2\)
\(=x\left(x^4-x^3+x^2-x+1\right)+2\left(x^4-x^3+x^2-x+1\right)\)
\(=\left(x+2\right)\left(x^4-x^3+x^2-x+1\right)\)
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(x+4+1\right)\left(x+4-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+5\right)\left(x-3\right)\)
=.= hok tốt!!
<=>x4-x+x2 +x+1= x (x-1) (x2+x+1) + (x2+x+1) = (x2+x+1)(x2-x+1)
chắc có lẽ đúng đó
\(x^4-5x^2+4=x^4-x^2-4x^2+4\)
\(=\left(x^2-1\right)\left(x^2+1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1-4\right)=\left(x^2-1\right)\left(x^2-3\right)\)
x4+x2+1=x4+2x2+1-x2
=(x2+1)2-x2
=(x2-x+1)(x2+x+1)