Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x8 + x + 1 = (x^2+x+1)*(x^6-x^5+x^3-x^2+1)
b) x^8 + 3x^4 + 4 = (x^4-x^2+2)*(x^4+x^2+2)
1)7x(x-5)-x(x-5)=(x-5)(7x-x)=6x(x-5)
2)x4+3x3+x+3=x3(x+3)+(x+3)=(x+3)(x3+1)=(x+3)(x+1)(x2-x+1)
3)x4+64=[(x2)2+2.x2.8+64]-16x2=(x2+8)2-(4x)2=(x2+4x+8)(x2-4x+8)
\(x^3+x^2+4=x^3+2x^2-x^2-2x+2x+4\)
\(=x^2\left(x+2\right)-x\left(x+2\right)+2\left(x+2\right)\)
\(=\left(x^2-x+2\right)\left(x+2\right)\)
\(x^8+64=x^8+16x^4+64-16x^4\)
\(=\left(x^4+8\right)^2-\left(4x^2\right)^2\)
\(=\left(x^4-4x^2+8\right)\left(x^4+4x^2+8\right)\)
\(4a^4+b^4=4a^4+4a^2b^2+b^4-4a^2b^2\)
\(=\left(2a^2+b^2\right)^2-\left(2ab\right)^2\)
\(=\left(2a^2+b^2-2ab\right)\left(2a^2+b^2+2ab\right)\)
\(x^3-2x-4=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x^2+2x+2\right)\left(x-2\right)\)
Chúc bạn học tốt.
a) ta có : x^2 -x-12 =( x^2 -4x) +(3x-12)=x(x-4) + 3(x-4) =(x+3)(x-4)
b)ta có: x^8 +3x^4 -4= x^4(x^4 +4) - (x^4 +4) =( x^4 -1)(x^4 +4) =(x^2 -1)(x^2 +1)(x^4 +4)
a/ \(x^{12}-3x^6+1\)
= \(\left(x^6\right)^2-2x^6+1-x^6\)
= \(\left(x^6-1\right)^2-\left(x^3\right)^2\)
= \(\left(x^6-x^3-1\right)\left(x^6+x^3-1\right)\)
b/ \(x^8-3x^4+1\)
= \(\left(x^4\right)^2-2x^4+1-x^4\)
= \(\left(x^4-1\right)^2-\left(x^2\right)^2\)
= \(\left(x^4-x^2-1\right)\left(x^4+x^2-1\right)\)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
a) \(x^4+324=\left(x^2-6x+18\right)\left(x^2+6x+18\right)\)
c) \(x^{13}+x^5+1=\left(x^2+x+1\right)\left(x^{11}-x^{10}+x^8-x^7+x^5-x^4+x^3-x+1\right)\)
d) \(x^{11}+x+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)
e) \(x^8+3x^4+4=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(a,x^4+64=\left(x^4+16x^2+64\right)\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right).\left(x^2+4x+8\right)\)
\(b,x^5+x+1\)
\(=\left(x^2+x+1\right).\left(x^3-x^2+1\right)\)
...
\(x^4+3x^2+36\)
\(=\left(x^2\right)^2+2.x^2.6+6^2-9x^2\)
\(=\left(x^2+6\right)^2-\left(3x\right)^2=\left(x^2-3x+6\right)\left(x^2+3x+6\right)\)
\(2x^4-3x^3-7x^2+6x+8\)
\(=2x^4+2x^3-5x^3-5x^2-2x^2-2x+8x+8\)
\(=2x^3\left(x+1\right)-5x^2\left(x+1\right)-2x\left(x+1\right)+8\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^3-5x^2-2x+8\right)\)
\(=\left(x+1\right)\left[2x^2\left(x-2\right)-x\left(x-2\right)-4\left(x-2\right)\right]\)
\(=\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)
Chúc bạn học tốt.
Câu a em check lại đề xem mũ 3 hay mũ 4 nhé
mũ 4 chị ơi