Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a) \(\left(x-9\right)\left(x-7\right)+1\)
\(=x^2-16x+63+1\)
\(=x^2-16x+64\)
\(=\left(x-8\right)^2\)
b) \(x^3+2x^2-3x-6\)
\(=x^2\left(x+2\right)-3x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-3x\right)\)
\(=x\left(x+2\right)\left(x-3\right)\)
c) \(x^2-y^2+xz-yz\)
\(=x\left(x+z\right)-y\left(y+z\right)\)
\(=\left(x-y\right)\left(y+z\right)\)
d) \(x^3-x+3x^2y+y^3-y\)
botay:(
Đặt \(x^2-3x-1=a\), ta có:
\(a^2-12a+27=a^2-9a-3a+27=a\left(a-9\right)-3\left(a-9\right)=\left(a-9\right)\left(a-3\right)\)
\(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
Mà \(x^2-3x-10=x^2-5x+2x-10=x\left(x-5\right)+2\left(x-5\right)=\left(x-5\right)\left(x+1\right)\)
và \(x^2-3x-4=x^2+x-4x-4=x\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-4\right)\)
\(\Rightarrow\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27=\left(x-5\right)\left(x-4\right)\left(x+1\right)\left(x+2\right)\)
a) ta có : x^2 -x-12 =( x^2 -4x) +(3x-12)=x(x-4) + 3(x-4) =(x+3)(x-4)
b)ta có: x^8 +3x^4 -4= x^4(x^4 +4) - (x^4 +4) =( x^4 -1)(x^4 +4) =(x^2 -1)(x^2 +1)(x^4 +4)
a) x8 + x + 1 = (x^2+x+1)*(x^6-x^5+x^3-x^2+1)
b) x^8 + 3x^4 + 4 = (x^4-x^2+2)*(x^4+x^2+2)
B1:
a) \(5\left(x^2+y^2\right)-20x^2y^2\)
\(=5\left(x^2-4x^2y^2+y^2\right)\)
b) \(=2\left(x^8-16\right)=2\left(x^4-4\right)\left(x^4+4\right)=2\left(x^2-2\right)\left(x^2+2\right)\left(x^4+4\right)\)
B2:
a) Đặt \(x^2-3x+1=y\)
=> \(y^2-12y+27\)
\(=\left(y^2-12y+36\right)-9\)
\(=\left(y-6\right)^2-3^2\)
\(=\left(y-9\right)\left(y-3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(=\left(x+1\right)\left(x-4\right)\left(x^2-3x-10\right)\)
b) Đặt \(x^2+7x+11=t\)
Ta có: \(\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
a/ \(x^{12}-3x^6+1\)
= \(\left(x^6\right)^2-2x^6+1-x^6\)
= \(\left(x^6-1\right)^2-\left(x^3\right)^2\)
= \(\left(x^6-x^3-1\right)\left(x^6+x^3-1\right)\)
b/ \(x^8-3x^4+1\)
= \(\left(x^4\right)^2-2x^4+1-x^4\)
= \(\left(x^4-1\right)^2-\left(x^2\right)^2\)
= \(\left(x^4-x^2-1\right)\left(x^4+x^2-1\right)\)