K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

a.\(\text{\(x^3z+x^2yz-x^2z^2-xyz^2\)}\)

\(=\left(x^3z+x^2yz\right)-\left(x^2z^2+xyz^2\right)=x^2z\left(x+y\right)-xz^2\left(x+y\right)\)

\(=xz\left(x-y\right)\left(x+y\right)\)

\(\text{ }\)

5 tháng 3 2018

b.gọi biểu thức là P ta có :

\(P=p^{m+1}q\left(p-q^2\right)-pq^{n+1}\left(p-q^2\right)\)

\(P=\left(p-q^2\right)\left(p^{m+1}q-pq^{n+1}\right)=pq\left(p-q^2\right)\left(p^m-q^n\right)\)

4 tháng 11 2016

a ) \(x^3z+x^2yz-x^2z^2-xyz^2=\left(x^3z-x^2z^2\right)+\left(x^2yz-xyz^2\right)\)

\(=\left(x-z\right)\left(x^2z+xyz\right)\)

\(=xz\left(x-z\right)\left(x+y\right)\)

b ) \(p^{m+2}.q-p^{m+1}q^3-p^2q^{n+1}+pq^{n+3}\)

\(=p^{m+1}q\left(p-q^2\right)-pq^{n+1}\left(p-q^2\right)\)

\(=\left(p-q^2\right)\left(p^{m+1}q-pq^{n+1}\right)\)

\(=pq\left(p-q^2\right)\left(p^m-q^n\right)\)

1 tháng 7 2018

\(a,x^2yz-x^3y^3z+xyz^2\)

\(=xyz\left(x-x^2y^2+z\right)\)

\(b,4x^3+24x^2-12xy^2\)

\(=4\left(x^3+6x^2-3xy^2\right)\)

\(c,15a^{m+2}b-45a^mb\)

\(=15a^m.a^2b-45a^mb\)

\(=15a^mb\left(a^2-3\right)\)

\(d,a^2-b^2+4bc-4c^2\)

\(=a^2-\left(b^2-4bc+4c^2\right)\)

\(=a^2-\left(b-2c\right)^2\)

\(=\left(a-b+2c\right)\left(a+b-2c\right)\)

1 tháng 7 2018

a) \(x^2yz-x^3y^3z+xyz^2\)

\(=xyz\left(x-x^2y^2+z\right)\)

b) \(4x^3+24x^2-12xy^2\)

\(=4x\left(x^2+6x-3y^2\right)\)

c) \(15a^{m+2}.b-45a^m.b\)

\(=15.\left(a^m.a^2-3a^m.b\right)\)

\(=15.a^m.\left(a^2-3b\right)\)

d) \(a^2-b^2+4bc-4c^2\)

\(=a^2-\left(b^2-4bc+4c^2\right)\)

\(=a^2-\left[\left(b^2-2bc+c^2\right)-2bc+3c^2\right]\)

...... ;)))))))

a: \(x^3z+x^2yz-x^2z^2-xyz^2\)

\(=x^2z\left(x+y\right)-xz^2\left(x+y\right)\)

\(=xz\left(x+y\right)\left(x-z\right)\)

11 tháng 10 2016

1/ x3 + x2y - x2z -xyz

= x2(x + y) - xz(x + y)

= (x + y) (x2 - xz)

= x (x + y) (x - z)

2/ 3x3y - 18x2y+ 27xy3

= 3xy(x2 - 6xy + y2

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

23 tháng 9 2017

a) \(6x^4-9x^3\)

\(=3x^3\left(2x-3\right)\)

b) \(5y^{10}+15y^6\)

\(=5y^6\left(y^4+5\right)\)

c) \(9x^2y^2+15^2y-21xy^2\)

\(=9x^2y^2+225y-21xy^2\)

\(=3y\left(3x^2y+75-7xy\right)\)

d) \(x^2y^2z+xy^2z^2+x^2yz^2\)

\(=xyz\left(xy+yz+xz\right)\)

23 tháng 9 2017

a) 6x4-9x3

3x3(2x-3)

6 tháng 9 2020

a) \(\left(x+y\right)^3-x^3-y^3\)

\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-x^2+xy-y^2\right]\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)

\(=3xy\left(x+y\right)\)

b) \(x^2+y^2+2xy+yz+xz\)

\(=\left(x^2+2xy+y^2\right)+\left(yz+xz\right)\)

\(=\left(x+y\right)^2+z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+z\right)\)

c) \(x^2-10xy-1+25y^2\)

\(=\left(x^2-10xy+25y^2\right)-1\)

\(=\left(x-5y\right)^2-1\)

\(=\left(x-5y-1\right)\left(x-5y+1\right)\)

d) \(ax^2-ax+bx^2-bx+a+b\)

\(=(ax^2+bx^2)-(ax+bx)+(a+b)\)

\(=x^2(a+b)-x(a+b)+(a+b)\)

\(=(a+b)(x^2-x+1)\)

e)\(x^2-2y+3xz+x-2y+3z\)

\(=(x^2+x)-(2xy+2y)+(3xz+3z)\)

\(=x(x+1)-2y(x-1)+3z(x+1)\)

\(=(x+1)(x-2y+3z)\)

f) \(xyz-xy-yz-xz+x+y+z-1\)

\(=(xyz-xy)-(yz-y)-(xz-x)+(z-1)\)

\(=xy(z-1)-y(z-1)-x(z-1)+(z-1)\)

\(=(z-1)(xy-y-x+1)\)

\(=(z-1)[y(x-1)-(x-1)]\)

\(=(z-1)(x-1)(y-1)\)

_Học tốt_

29 tháng 6 2017

a) \(12x^5y+24x^4y^2+12x^3y^3\)

\(=12x^3y\left(x^2+2xy+y^2\right)\)

\(=12x^3y\left(x+y\right)^2\)

b) \(x^2-2xy-4+y^2\)

\(=\left(x-y\right)^2-2^2\)

\(=\left(x-y-2\right)\left(x-y+2\right)\)

g) \(12xy-12xz+3x^2y-3x^2z\)

\(=12x\left(y-z\right)+3x^2\left(y-z\right)\)

\(=3x\left(4+x\right)\left(y-z\right)\)

e) \(16x^2-9\left(x^2+2xy+y^2\right)\)

\(=\left(4x\right)^2-\left[3\left(x+y\right)\right]^2\)

\(=\left(4x-3\left(x+y\right)\right)\left(4x+3\left(x+y\right)\right)\)

\(=\left(x+y\right)\left(7x+y\right)\)

d) làm tương tự như phần g chỉ khác là phải nhóm( nhóm xen kẽ), phần f cũng vậy