K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

\(a^2-8a+15\)

\(=\left(a^2-2.4a+4^2\right)-1^2\)

\(=\left(a-4\right)^2-1^2\)

\(=\left(a-4-1\right)\left(a-4+1\right)\)

\(=\left(a-3\right).\left(a-5\right)\)

21 tháng 7 2018

\(a^2-8a+15\)

\(=a^2-2.a.4+16-1\)

\(=\left(a-4\right)^2-1\)

\(=\left(a-4-1\right)\left(a-4+1\right)\)

\(=\left(a-5\right)\left(a-3\right)\)

\(3x^2-10x-8\)

\(=3x^2-12x+2x-8\)

\(=3x\left(x-4\right)+2\left(x-4\right)\)

\(=\left(3x+2\right)\left(x-4\right)\)

\(-6x^3+18x^2+60x\)

\(=\)\(-6x^3+30x^2-12x^2+60x\)

\(=-6x^2\left(x-5\right)-12x\left(x-5\right)\)

\(=\)\(\left(-6x^2-12x\right)\left(x-5\right)\)

\(=-6x\left(x+2\right)\left(x-5\right)\)

30 tháng 9 2016

a) xz-yz+5y-5x=\(z\left(x-y\right)+5\left(y-x\right)\)=\(z\left(x-y\right)-5\left(x-y\right)\)=\(\left(z-5\right)\left(x-y\right)\)

b) \(3x^2-6x+3-3y^2\)=\(3\left(x^2-2x+1-y^2\right)\)=\(3\left(\left(x-1\right)^2-y^2\right)\)=\(3\left(x-1-y\right)\left(x-1+y\right)\)

30 tháng 9 2016

=(xz -yz)+(5y-5x)

= z(x-y)+5(y-z)

=(x-y)(z+5)

mk ko chắc răng đáp số cuối là đúng

29 tháng 10 2018

\(x^5+x^4+1\)

\(=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

29 tháng 8 2021

Trả lời:

a, \(27a^2b^2-18ab+3=3\left(9a^2b^2-6ab+1\right)=3\left(3ab-1\right)^2\)

b, \(x^2+2xy+y^2-xz-yz\)

\(=\left(x^2+2xy+y^2\right)-z\left(x+y\right)\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)

c, \(a^4+a^3-a^2-a\)

\(=\left(a^4+a^3\right)-\left(a^2+a\right)\)

\(=a^3\left(a+1\right)-a\left(a+1\right)\)

\(=a\left(a+1\right)\left(a^2-1\right)\)

\(=a\left(a+1\right)\left(a-1\right)\left(a+1\right)\)

\(=a\left(a+1\right)^2\left(a-1\right)\)

d, \(a^3-b^3+2b-2a\)

\(=\left(a^3-b^3\right)-\left(2a-2b\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)-2\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2-2\right)\)

5 tháng 7 2021

a.\(xz+yz-5\left(x+y\right)\)

\(=z\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(z-5\right)\)

b.\(3x^2-3xy-5x+5y\)

\(=3x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5\right)\)

c.\(x^2+6x-y^2-3z^2\)???Sai đề bài ...?

d.\(3x^2+6xy+3y^2-3z^2\)

\(=3\left(x^2+2xy+y^2-z^2\right)\)

\(=3\left[\left(x+y\right)^2-z^2\right]\)'

\(=3\left(x+y-z\right)\left(x+y+z\right)\)

5 tháng 7 2021

Trả lời:

a, xz + yz - 5 ( x + y )

= ( xz + yz ) - 5 ( x + y )

= z ( x + y ) - 5 ( x + y )

= ( x + y ) ( z - 5 )

b, 3x2 - 3xy - 5x + 5y

= ( 3x2 - 3xy ) - ( 5x - 5y )

= 3x ( x - y ) - 5 ( x - y )

= ( x - y ) ( 3x - 5 )

c, x2 + 6x - y2 - 3z2

= - ( 3x2 - x2 + y2 - 6x )

d, 3x2 + 6xy + 3y2 - 3z2

= 3 ( x2 + 2xy + y2 - x2 )

= 3 [ ( x2 + 2xy + y2 ) - z2 ]

= 3 [ ( x + y )2 - z2 ]

= 3 ( x + y - z ) ( x + y + z )

8 tháng 8 2018

1) \(x^2-2xy+y^2-xz+yz\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(xz-yz\right)\)

\(\Leftrightarrow\left(x-y\right)^2-z\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x-y-z\right)\)

2)\(x^2-y^2-x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+1\right)\)

8 tháng 8 2018

\(a,x^2-2xy+y^2-xz+yz\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

\(b,x^2-y^2-x+y\)

\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-1\right)\)

14 tháng 10 2020

1) \(4x^2-7x-2=4x^2-8x+x-2=\left(4x^2-8x\right)+\left(x-2\right)\)

\(=4x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(4x+1\right)\)

2) \(4x^2+5x-6=4x^2+8x-3x-6=\left(4x^2+8x\right)-\left(3x+6\right)\)

\(=4x\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(4x-3\right)\)

3) \(5x^2-18x-8=5x^2-20x+2x-8=\left(5x^2-20x\right)+\left(2x-8\right)\)

\(=5x\left(x-4\right)+2\left(x-4\right)=\left(x-4\right)\left(5x+2\right)\)

4) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)

\(=xy\left(x+y\right)-y^2z-yz^2+x^2z-xz^2\)

\(=xy\left(x+y\right)+\left(x^2z-y^2z\right)-\left(yz^2+xz^2\right)\)

\(=xy\left(x+y\right)+z\left(x^2-y^2\right)-z^2.\left(x+y\right)\)

\(=xy\left(x+y\right)+z\left(x-y\right)\left(x+y\right)-z^2\left(x+y\right)\)

\(=xy\left(x+y\right)+\left(zx-zy\right)\left(x+y\right)-z^2\left(x+y\right)\)

\(=\left(x+y\right)\left(xy+xz-yz-z^2\right)=\left(x+y\right).\left[x\left(y+z\right)-z\left(y+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(x-z\right)\)

14 tháng 10 2020

1) 4x2 - 7x - 2 = 4x2 - 8x + x - 2 = 4x( x - 2 ) + ( x - 2 ) = ( x - 2 )( 4x + 1 )

2) 4x2 + 5x - 6 = 4x2 - 8x + 3x - 6 = 4x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 4x + 3 )

3) 5x2 - 18x - 8 = 5x2 - 20x + 2x - 8 = 5x( x - 4 ) + 2( x - 4 ) = ( x - 4 )( 5x + 2 )

4) xy( x + y ) - yz( y + z ) + xz( x - z )

= x2y + xy2 - y2z - yz2 + xz( x - z )

= ( x2y - yz2 ) + ( xy2 - y2z ) + xz( x - z )

= y( x2 - z2 ) + y2( x - z ) + xz( x - z )

= y( x - z )( x + z ) + y2( x - z ) + xz( x - z )

= ( x - z )[ y( x + z ) + y2 + xz ]

= ( x - z )( xy + yz + y2 + xz )

= ( x - z )[ ( xy + y2 ) + ( xz + yz ) ]

= ( x - z )[ y( x + y ) + z( x + y ) ]

= ( x - z )( x + y )( y + z )

5) xy( x + y ) + yz + xz( x + z ) + 2xyz ( đề có thiếu không vậy .-. )

30 tháng 7 2018

do hơi bận nên mk ghi đáp án nha, ko hiểu đâu ib mk 

a)  \(3xy^2-2xy+12x=x\left(3y^2-2y+12\right)\)

b)  \(x^3-10x^2+25x-16xy^2=x\left(x-4y-5\right)\left(x+4y-5\right)\)

c)  \(5y^3-10xy^2+5x^2y-20y=5y\left(y-x-2\right)\left(y-x+2\right)\)

d)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)\left(x+y-z\right)\) 

e)  \(9x^2+y^2+6xy=\left(3x+y\right)^2\)

f)  \(8-12x+6x^2-x^3=\left(2-x\right)^3\)

g)  \(125x^3-75x^2+15x-1=\left(5x-1\right)^3\)

h)  \(x^2-xz-9y^2+3yz=\left(x-3y\right)\left(x+3y-z\right)\)

22 tháng 10 2021

\(a,=\left(xy-1-x-y\right)\left(xy-1+x+y\right)\\ b,Sửa:a^3+2a^2+2a+1\\ =a^3+a^2+a^2+a+a+1=\left(a+1\right)\left(a^2+a+1\right)\\ c,=1-4a^2-a\left(a^2-4\right)=1-4a^2-a^3+4a\\ =\left(1-a\right)\left(1+a+a^2\right)+4a\left(1-a\right)\\ =\left(1-a\right)\left(1+5a+a^2\right)\\ d,=\left(a^2-a^2b^2\right)+\left(b^2-b\right)+\left(ab-a\right)\\ =a^2\left(1-b\right)\left(1+b\right)+b\left(b-1\right)+a\left(b-1\right)\\ =\left(b-1\right)\left(-a^2-ab+b+a\right)\\ =\left(b-1\right)\left(b-1\right)\left(a+b\right)\left(1-a\right)\)

\(e,=x^2y+xy^2-yz\left(y+z\right)+x^2z-xz^2\\ =\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\\ =x^2\left(y+z\right)+x\left(y-z\right)\left(y+z\right)-yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy-xz-yz\right)\\ =\left(y+z\right)\left(x+y\right)\left(x-z\right)\)

\(f,=xyz-xy-yz-xz+x+y+z-1\\ =xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(x-1\right)\\ =\left(z-1\right)\left(xy-y-x+1\right)=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)