Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
a: \(=\left(x+2-y\right)\left(x+2+y\right)\)
c: \(=\left(x-y\right)^2\)
\(x^2+4x-y^2+4\)
\(=\left(x^2+2.x.2+2^2\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right).\left(x+2+y\right)\)
Tham khảo nhé~
\(x^2+4x-y^2+4\)
\(=x^2+4x+4-y^2\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x^2+2x.2+2^2\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left[\left(x+2\right)+y^2\right].\left[\left(x+2\right)-y^2\right]\)
\(=\left(x+2+y^2\right)\left(x+3-y^2\right)\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(x^4-5x^2+4=x^4-x^2-4x^2+4=x^2\left(x^2-1\right)-4\left(x^2-1\right)=\left(x^2-4\right)\left(x^2-1\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
Ta có : x4 - 5x2 + 4
= x4 - x2 - 4x2 + 4
= x2(x2 - 1) + (4x2 - 4)
= x2(x2 - 1) + 4(x2 - 1)
= (x2 - 1)(x2 + 4)
Ta có : x2 + 5x + 4
= x2 + x + 4x + 4
= x(x + 1) + 4(x + 1)
= (x + 1)(x + 4)
a) \(9-\left(x+y\right)^2=3^2-\left(x+y\right)^2\)
\(=\left[3-\left(x+y\right)\right]\left[3+\left(x+y\right)\right]\)
\(=\left(3-x-y\right)\left(3+x+y\right)\)
b)\(x^4-1=\left(x^2\right)^2-1^2\)
\(=\left(x^2-1\right)\left(x^2+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
Dùng hằng đẳng thức
x4 + x3 + 2x2 + x + 1
= (x4 + 2x2 + 1) + (x3 + x)
= (x2 + 1)2 + x (x2 + 1)
= (x2 + 1) ( x2 + 1 + x)
= (x2 + 1) (x + 1)2
Ta có:
x^4-y^4=(x^2-y^2)(x^2+y^2)=(x-y)(x+y)(x^2+y^2)