Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(_{84}^{210}Po \rightarrow_Z^A X + _2^4He\)
\(m_t-m_s = m_{Po}-(m_X + m_{He}) = 5,805.10^{-3}u > 0\), phản ứng là tỏa năng lượng.
=> \(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)
=> \(5,805.10^{-3}.931,5 = K_X+K_{He}\) (do hạt nhân Po đứng yên nen KPo = Ktruoc = 0)
=> \( K_X+K_{He}=5,4074MeV.(1)\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{Po} =\overrightarrow P_{He} + \overrightarrow P_{X} = \overrightarrow 0\)
=> \(P_{He} = P_X\)
=> \(m_{He}.K_{He} =m_X. P_X.(2)\)
Thay mHe= 4,002603 u; mX = 205,974468 u vào (2). Bấm máy giải hệ phương trình được nghiệm
\(K_{He}= 5,3043 \ \ MeV => v_{He} = \sqrt{\frac{2.5,3043.10^6.1,6.10^{-19}}{4,002603.1,66055.10^{-27}}} \approx 1,6.10^7 m/s.\)
mik nghĩ C
nhưng dựa vào định luật bảo tàng động lượng thì xác xuất tỉ lệ chỉ là gần bằng mà thôi nó cũng tương ứng vs 50% còn phải tùy vào sự may mắn hay đáp án nx
mik giải ra là gần bằng 1,6.10^7 m/s
Cứ mỗi hạt nhân Pôlôni bị phân rã tạo thành 1 hạt nhân chì trong mẫu.
Số hạt nhân Pôlôni bị phân rã là \(\Delta N = N_0 2^{-\frac{t}{T}}.\)
Số hạt nhân Pônôni còn lại là \( N = N_0 2^{-\frac{t}{T}}.\)
Tại thời điểm t1 : \(\frac{\Delta N}{N } = \frac{1-2^{-\frac{t_1}{T}}}{2^{-\frac{t_1}{T}}}= \frac{1}{3}\)
=> \(3(1-2^{-\frac{t_1}{T}})= 2^{-\frac{t_1}{T}}\)
=> \(2^{-\frac{t_1}{T}}= 2^{-2}\)
=> \(t_1 = 2T\)
=> \(t_2 = 2T+276 = 552 \) (ngày)
=> \(\frac{t_2}{T}= \frac{552}{138}= 4.\)
Tại thời điểm t2 : \(\frac{\Delta N_1}{N_1 } = \frac{1-2^{-\frac{t_2}{T}}}{2^{-\frac{t_2}{T}}}= \frac{1-2^{-4}}{2^{-4}}= 15.\)
=> \(\frac{N_1}{\Delta N_1} = \frac{1}{15}.\)
\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)
Phản ứng tỏa năng lượng nên \(W_{tỏa} = (m_t-m_s)c^2 = 2K_{He}-(K_p+K_{Li})\)
=> \( 2K_{He} = (m_p+m_{Li}-2m_{He})c^2+ K_p\) (do Li đứng yên nên KLi = 0)
=> \(K_{He} = 9,6 MeV = 9,6.10^6.1,6.10^{-19}J.\)
=> \(v = \sqrt{\frac{2K_{He}}{m_{He}}} = \sqrt{\frac{2.9,6.10^6.1,6.10^{-19}}{4,0015.1,66.10^{-27}}} = 21505282,4 m/s.\)
Cứ 1 hạt nhân \(_{92}^{238}U\) bị phân rã tạo ra 1 hạt nhân \(_{82}^{206}Pb\). Từ đó ta có nhận xét là số hạt nhân \(_{92}^{238}U\) bị phân rã chính bằng số hạt nhân \(_{82}^{206}Pb\) tạo thành.
Tỉ số giữa số hạt nhân \(_{92}^{238}U\) bị phân rã và số hạt nhân \(_{92}^{238}U\) còn lại là
\(\frac{\Delta N}{N}= \frac{6,239.10^{18}}{1,188.10^{20}}= 0,0525 = \frac{1-2^{-\frac{t}{T}}}{2^{-\frac{t}{T}}}\)
Nhân chéo => \(2^{-\frac{t}{T}}= 0,95.\)
=> \(t = -T\ln_2 0,95 = 3,3.10^8\)(năm)
=> Tuổi của khối đã là 3,3.108 năm.
\(\alpha + _7^{14}N \rightarrow _1^1p + _8^{17}O\)
\(m_t-m_s = m_{\alpha}+m_N - (m_{O}+m_p) =- 1,3.10^{-3}u < 0\), phản ứng thu năng lượng.
\(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)
=> \(1,3.10^{-3}.931,5 = K_{He}+K_N- (K_p+K_O)\)(do Nito đứng yên nên KN = 0)
=> \(K_p +K_O = 6,48905MeV. (1)\)
Áp dụng định luật bảo toàn động lượng
P P α P p O
\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_{O} \)
Dựa vào hình vẽ ta có (định lí Pi-ta-go)
\(P_{O}^2 = P_{\alpha}^2+P_p^2\)
=> \(2m_{O}K_{O} = 2m_{He}K_{He}+ 2m_pK_p.(2)\)
Từ (1) và (2) giải hệ phương trình ta được
\(K_p = 4,414MeV; K_O = 2,075 MeV.\)
\(\alpha + _7^{14}N \rightarrow p + _8^{17} O\)
\(m_t-m_s = m_{\alpha}+m_N - (m_p+m_O) = -1,281.10^{-3}u < 0\), phản ứng là thu năng lượng.
Sử dụng công thức: \(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)
=> \(1,285.10^{-3}.931 = K_{\alpha}+K_N-( K_p+K_O)\) (do N đứng yên nên KN = 0)
=> \(K_{O} = 1,5074MeV.\)
Áp dụng định luật bảo toàn động lượng
P P α p P α O
\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_O \)
Dựa vào hình vẽ ta có
Áp dụng định lí hàm cos trong tam giác
\(P_{\alpha}^2+ P_{p}^2 -2 P_{\alpha}P_{p}\cos{\alpha} = P_{O}^2\)
=> \(\cos {\alpha} = \frac{P_{\alpha}^2+P_p^2-P_O^2}{2P_{\alpha}.P_{p}} = \frac{2m_{\alpha}K_{\alpha}+2m_pK_P-2.m_O.K_O}{2.\sqrt{2.m_{\alpha}K_{\alpha}.2.m_p.K_p}} \)
=> \(\alpha \approx 52^016'\).
\(_1^1p + _4^9Be \rightarrow _2^4He+ _3^6 Li\)
Áp dụng định luật bảo toàn động lượng
PPαPLip
\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)
Dựa vào hình vẽ ta có (định lí Pi-ta-go)
\(P_{Li}^2 = P_{\alpha}^2+P_p^2\)
=> \(2m_{Li}K_{Li} = 2m_{He}K_{He}+ 2m_pK_p\)
=> \(K_{Li} = \frac{4K_{He}+K_p}{6}=3,58MeV\)
=> \(v = \sqrt{\frac{2.K_{Li}}{m_{Li}}} = \sqrt{\frac{2.3,58.10^6.1,6.10^{-19}}{6.1,66055.10^{-27}}} = 10,7.10^6 m/s.\)
\(_1^1p + _3^7 Li \rightarrow _2^4He+_2^4He\)
\(W_{tỏa} = (m_t-m_s)c^2 =( m_{Li}+m_p - 2m_{He}).931=17,4097MeV.\)
Số hạt nhân \(_2^4He\) trong 1,5 g heli là \(N= nN_A= \frac{m}{A}.N_A = \frac{1,5}{4}.6,02.10^{23}= 2,2575.10^{23} \)(hạt)
Mỗi phản ứng tạo ra 2 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là 17,4097 MeV
=> Để tạo ra 2,2572.1023 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là
\(W = \frac{17,4097.2,2575.10^{23}}{2} = 1,965.10^{24}MeV.\)
Do hạt nhân mẹ Po ban đầu đứng yên, áp dụng định luật bảo toàn động lượng trước và sau phản ứng ta thu được
\(P_{\alpha} = P_{Pb} \)
=> \(2m_{\alpha} K_{\alpha}=2m_{Pb}K_{Pb} \)
=> \( 4,0026.K_{\alpha}=205,9744.K_{Rn}.(1)\)
Áp dụng định luật bảo toàn năng lượng toàn phần có
\(K_{\alpha}+K_{Pb} = (m_t-m_s)c^2\)
=> \(K_{\alpha}+K_{Rn} = (m_{Po}-m_{\alpha}-m_{Pb})c^2= 0,0058.931,5 = 5,4027 MeV. (2)\)
Từ (1) và (2) giải hệ phương trình ta được
\(K_{\alpha} = 5,2997 MeV; K_{Pb} = 0,103 MeV. \)
=> \(v_{Pb}= \sqrt{\frac{2K_{Pb}}{m_{Pb}}} =\sqrt{\frac{2.0,103.10^6.1,6.10^{-19}}{205,9744.1,66055.10^{-27}}} = 3,06.10^5m/s.\)
Chú ý đổi đơn vị \(1 MeV = 10^6.1,6.10^{-19}J ; 1 u = 1,66055.10^{-27} kg.\)