Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay m = 3 vào phương trình trên ta được : \(PT\Leftrightarrow x^2-3x-4=0\)
Ta có : \(\Delta=9+16=25>0\)
phương trình có 2 nghiệm phân biệt
\(x_1=\frac{3-5}{2}=-1;x_2=\frac{3+5}{2}=4\)
Vậy với m = 3 thì x = -1 ; 4
b, Theo vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-4\end{cases}}\)
Ta có : \(x_1\left(x_2^2+1\right)+x_2\left(x_1^2+1\right)>6\)
\(\Leftrightarrow x_1x_2^2+x_1+x_2x_1^2+x_2>6\)
\(\Leftrightarrow-4x_2+m-4x_1>6\)
\(\Leftrightarrow-4\left(x_2+x_1\right)+m>6\)
\(\Leftrightarrow-3m>6\Leftrightarrow m< -2\)
Xét pt đã cho có \(\Delta=m^2-4.1.\left(-m-1\right)=m^2+4m+4=\left(m+2\right)^2\ge0\)với mọi \(m\inℝ\)
Vậy pt đã cho luôn có 2 nghiệm với mọi \(m\inℝ\)
Theo định lí Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=-\frac{-m}{1}=m\\x_1x_2=\frac{-m-1}{1}=-m-1\end{cases}}\)
Lại có \(\left|x_1-x_2\right|\ge3\)\(\Leftrightarrow\left(x_1-x_2\right)^2\ge9\)(vì cả 2 vế của BĐT đầu đều lớn hơn 0)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge9\)\(\Leftrightarrow m^2-4\left(-m-1\right)\ge9\)\(\Leftrightarrow m^2+4m+4\ge9\)\(\Leftrightarrow\left(m+2\right)^2\ge9\)\(\Leftrightarrow\orbr{\begin{cases}m+2\ge3\\m+2\le-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-5\end{cases}}\)
Vậy các giá trị của m để pt có 2 nghiệm x1, x2 thỏa mãn \(\left|x_1-x_2\right|\ge3\)là \(\orbr{\begin{cases}m\ge1\\m\le-5\end{cases}}\)
a, \(x^2-2\left(m+1\right)x+m^2+m+1=0\)
Ta có : \(\left(-2m-2\right)^2-4\left(m^2+m+1\right)=4m^2+8m+4-4m^2-4m-4\)
\(=4m\)Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay \(4m>0\Leftrightarrow m>0\)
b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+m+1\end{cases}}\)
\(x_1^2+x_2^2=3x_1x_2-1\)
mà \(x_1+x_2=2m+2\Leftrightarrow\left(x_1+x_2\right)^2=\left(2m+2\right)^2\)
\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)
\(=4m^2+8m+4-\left(m^2+m+1\right)=3m^2+7m+3\)
hay \(3m^2+7m+3=3\left(m^2+m+1\right)-1\)
\(\Leftrightarrow3m^2+7m+3=3m^2+3m+2\Leftrightarrow4m+1=0\Leftrightarrow m=-\frac{1}{4}\)
Phương trình (1) có Δ=9+8m2>0Δ=9+8m2>0 với mọi m nên (1) luôn có 2 nghiệm phân biệt.
Gọi hai nghiệm đó là x1,x2,x1,x2, theo định lý Viet ta có: {x1+x2=3x1x2=−2m2{x1+x2=3x1x2=−2m2
Điều kiện x12=4x22⇔(x1−2x2)(x1+2x2)=0⇔[x1=2x2x1=−2x2x12=4x22⇔(x1−2x2)(x1+2x2)=0⇔[x1=2x2x1=−2x2
Với x1=2x2,x1=2x2, giải hệ {x1+x2=3x1=2x2⇔{x1=2x2=1⇒2=−2m2⇔m∈∅⇒{x1+x2=3x1=2x2⇔{x1=2x2=1⇒2=−2m2⇔m∈∅⇒ không tồn tại m.
Với x1=−2x2,x1=−2x2, giải hệ {x1+x2=3x1=−2x2⇔{x1=6x2=−3⇒−18=−2m2⇔m=±3{x1+x2=3x1=−2x2⇔{x1=6x2=−3⇒−18=−2m2⇔m=±3
Vậy m=±3m=±3 thỏa mãn yêu cầu bài toán.
Phương trình (1) có Δ=9+8m2>0Δ=9+8m2>0 với mọi m nên (1) luôn có 2 nghiệm phân biệt.
Gọi hai nghiệm đó là x1,x2,x1,x2, theo định lý Viet ta có: {x1+x2=3x1x2=−2m2{x1+x2=3x1x2=−2m2
Điều kiện x12=4x22⇔(x1−2x2)(x1+2x2)=0⇔[x1=2x2x1=−2x2x12=4x22⇔(x1−2x2)(x1+2x2)=0⇔[x1=2x2x1=−2x2
Với x1=2x2,x1=2x2, giải hệ {x1+x2=3x1=2x2⇔{x1=2x2=1⇒2=−2m2⇔m∈∅⇒{x1+x2=3x1=2x2⇔{x1=2x2=1⇒2=−2m2⇔m∈∅⇒ không tồn tại m.
Với x1=−2x2,x1=−2x2, giải hệ {x1+x2=3x1=−2x2⇔{x1=6x2=−3⇒−18=−2m2⇔m=±3{x1+x2=3x1=−2x2⇔{x1=6x2=−3⇒−18=−2m2⇔m=±3
Vậy m=±3m=±3 thỏa mãn yêu cầu bài toán.
a) Thay m = -12 vào phương trình ta có
x2 + 5x – 14 = 0
<=> x2 + 7x - 2x - 14 = 0
<=> (x2 + 7x ) - (2x + 14) = 0
<=> x(x + 7) - 2(x + 7) = 0
<=> (x - 2)( x + 7) = 0
<=> x - 2 = 0 hoặc x + 7 = 0
<=> x = 2 hoặc x = -7
Vậy tập nghiệm của phương trình là S={-7 ; 2 }
Em chỉ iết làm câu này câu sau em xin lỗi!
a, Thay m =-12 vào phương trình trên ta được :
\(PT\Leftrightarrow x^2+5x-14=0\)
Ta có : \(\Delta=25-4\left(-14\right)=25+56=81>0\)
Vậy ta có 2 nghiệm phân biệt
\(x_1=\frac{-5-9}{2}=-7;x_2=\frac{-5+9}{2}=2\)
Vậy với m = -12 thì x = -7 ; 2
b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{-5}{2}\\x_1x_2=\frac{c}{a}=\frac{m-2}{2}\end{cases}}\)
Ta có : \(\frac{1}{x_1-1}+\frac{1}{x_2-1}=2\)ĐK : \(x_1\ne1;x_2\ne1\)
Gọi \(x_1=a;x_2=b\)( em đặt cho dễ viết thôi nhé )
\(\frac{1}{a-1}+\frac{1}{b-1}=2\)
\(\Leftrightarrow\frac{b-1+a-1}{\left(a-1\right)\left(b-1\right)}=\frac{2\left(a-1\right)\left(b-1\right)}{\left(a-1\right)\left(b-1\right)}\)
\(\Rightarrow a+b-2=2\left(ab-a-b+1\right)\)
\(\Leftrightarrow a+b-2=2\left[ab-\left(a+b\right)+1\right]\)
hay \(-\frac{5}{2}-2=2\left(\frac{m-2}{2}+\frac{5}{2}+1\right)\)
\(\Leftrightarrow\frac{-9}{2}=2\left(\frac{m+5}{2}\right)\Leftrightarrow\frac{-9}{2}=\frac{2m+10}{2}\)
\(\Rightarrow2m+10=-9\Leftrightarrow m=-\frac{19}{2}\)
32≤�≤223≤m≤2.