Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có để h(x)=3.|x-2|+5 đạt GTNN
=>3.|x-2| nhỏ nhất
mà 3.|x-2| không âm
=>3.|x-2|>hoặc = 0 mà để 3.|x-2|nhỏ nhất
=>3.|x-2|=0
=>x=2
thay h(2)=3.|2-2|+5=5
vậy GTNN của h(x)=1/2
b) để 1/(x^2-2x+2) đạt GTLN
=> x^2-2x+2 nhỏ nhất
=> x^2-2x nhỏ nhất mà x^2-2x ko âm
=> x^2-2x>hoặc =0
=> x^2-2x=0
=>x=0
thay 1/(1^2-2.1+2)=1/2
\(B=\dfrac{2x+4}{x^2+2}\)
\(x^2\ge0\forall x\)
\(\Rightarrow x^2+2\ge2\)
\(\Rightarrow\dfrac{2x+4}{x^2+2}\le\dfrac{2x+4}{2}\)
Dấu "=" xảy ra khi:
\(x^2=0\Rightarrow x=0\)
\(\Rightarrow MAX_B=\dfrac{2.0+4}{0^2+2}=\dfrac{4}{2}=2\)
\(C=\dfrac{4x^2-4x-7}{\left(x-2\right)^2}\)
\(\left(x-2\right)^2\ne0\)
\(\left(x-2\right)^2\ge0\)
\(C=\dfrac{4x^2-4x-7}{\left(x-2\right)^2}\le\dfrac{4x^2-4x-7}{1}\)
\(MAX_C=\dfrac{4.3^2-4.3-7}{\left(3-2\right)^2}=\dfrac{17}{1}=17\)
\(\left|x^4+5\right|^2\ge25\)
Dấu '=' xảy ra khi x=0
Bài này chỉ tìm được \(GTNN\) thôi bạn nhé!
\(F=\dfrac{1}{2}\left(x-1\right)^2+\dfrac{1}{3}\\ \text{Do }\left(x-1\right)^2\ge0\forall x\\ \Rightarrow\dfrac{1}{2}\left(x-1\right)^2\ge0\forall x\\ F=\dfrac{1}{2}\left(x-1\right)^2+\dfrac{1}{3}\ge\dfrac{1}{3}\forall x\)
Dấu \("="\) xảy ra khi :
\(\left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\)
Vậy \(F_{\left(Min\right)}=3\) khi \(x=1\)
violympic cho hoai ma mink hk pik lam