\(x=10\cos10\pi t\;(cm)\). Thời điểm vật đi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2015

Chu kì: T = 0,2s.

Biểu diễn dao động bằng véc tơ quay ta có:

Ox10-105MN600

Pha ban đầu bằng 0 nên véc tơ quay xuất phát từ M.

Chất điểm qua li độ 5cm theo chiều dương ứng với véc tơ quay qua N.

Khi véc tơ quay quay được 2009 vòng, nó qua N 2009 lần, ứng với dao động qua 5cm theo chiều dương 2009 lần. Tuy nhiên ở vòng quay cuối, chỉ cần quay đến N là đủ.

Vậy thời gian cần thiết là: t = \(2009T - \frac{60}{360}T = (2008+\frac{5}{6}).0,2=401,77\)s

27 tháng 8 2015

Chu kì T = 0,2 s.

Biểu diễn bằng véc tơ quay ta được

O x 10 -10 5 M N 60 0

Do pha ban đầu bằng 0 nên véc tơ quay xuất phát từ M. Véc tơ quay quay được 1004 vòng thì hình chiếu qua li độ 5cm là 2008 lần, nhưng do vòng quay cuối chỉ cần đến N là đủ, nên thời gian cần thiết là: t = 1004T - \(\frac{60}{360}\)T = (1003 + \(\frac{5}{6}\)).0,2 = 200,77s.

27 tháng 8 2015

Nguyễn Quang Hưng lớp mấy mà giỏi vậy 

29 tháng 8 2015

Chu kì: T = 0,2s.

Biểu diễn dao động bằng véc tơ quay ta có:

O x 10 -10 5 M N 60 0

Do pha ban đầu bằng 0 nên véc tơ quay xuất phát từ M.

Chất điểm qua li độ 5cm theo chiều âm nên véc tơ quay qua điểm N.

Như vậy, véc tơ quay quay được 999 vòng thì nó qua N 999 lần. Trong lần cuối cùng chỉ cần qua tiếp từ M đến N là đủ.

Vậy tổng thời gian cần thiết là: \(999T + \frac{60}{360} T=(999+\frac{1}{6}).0,2=199,833\)s

26 tháng 9 2015

Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)

+ Tần số góc: \(\omega = \frac{2\pi}{T}=\frac{2\pi}{2} = \pi\) (rad/s)
+ Biên độ: \(A=\frac{v_{max}}{\omega}=\frac{31,4}{\pi} = 10 \ (cm)\)
+ t = 0 \(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\) \(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{5}{10}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Phương trình dao động: \(x=10\cos(\pi t + \frac{\pi}{3})\) (cm)
 
29 tháng 8 2015

Phương trình tổng quát: x = \(A\cos(\omega t+\varphi)\)

+ Tần số: f= 120/60 = 2 Hz \(\Rightarrow \omega = 2\pi f = 2\pi .2 = 4\pi\) (rad/s)

+ Biên độ: A = 40/4 = 10 (cm) (1 chu kì vật đi quãng đường là 4A)

t=0, vật có li độ dương, chiều hướng về VTCB, nên v0<0.

\(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 5/10=0,5\ \\ \sin \varphi > 0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)

Vậy phương trình: \(x=10\cos(4\pi t +\frac{\pi}{3})\)

29 tháng 5 2018

Giải thích chỗ cách tính Biên độ A cho em với ạ

27 tháng 10 2015

Tốc độ trung bình của vật là \(v = \frac{\text{quãng đường đi được}}{t}\)

(chú ý là tốc độ trung bình khác với vận tốc trung bình vì vận tốc trung bình = \(\frac{x_{cuoi}-x_{dau}}{t}\))

Dùng đường tròn để tìm quãng đường và thời gian đi

4 -4 2 3 2 3 - M N a π/6 π/6 H K

Vật đi được từ điểm N (\(x = -2\sqrt{3}\) hường theo chiều dương của trục x) đến điểm M (\(x = 2\sqrt{3}\) hướng theo chiều dương của trục x) tức là ứng với cung \(\stackrel\frown{NaM}\)

Quãng đường đi được là: \(S = HK= 2\sqrt{3}+ 2\sqrt{3} = 4\sqrt{3}cm.\)

Thời gian đi \(t = \frac{\varphi}{\omega} = \frac{\pi/3+\pi/3}{8\pi} = \frac{1}{12}s.\)

Vận tốc trung bình là \(v = \frac{4\sqrt{3}}{1/12} = 48 \sqrt{3}cm/s.\)

Chọn đáp án. D

12 tháng 4 2020

Làm sao biết được là pi/6 vậy ạ. C chỉ giúp mình được không ạ?

1 tháng 10 2015

Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)

\(\omega = \frac{2\pi}{T} = \frac{2\pi}{2} = \pi\) (rad/s)

+ Nhận xét: Trong 2s = 1T, vật đi quãng đường 4.A = 40 cm, \(\Rightarrow\) A=10cm.

+ t = 0, vật qua VTCB theo chiều dương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ \\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)

Vậy phương trình: \(x = 10cos(\pi t -\frac{\pi}{2})\) (cm)

30 tháng 9 2015

Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)

+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)

+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)

Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)

19 tháng 5 2018

tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???

30 tháng 9 2015

Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)

\(\omega = 2\pi f = 2\pi .10 = 20\pi \ (rad/s) \)

+ A = 4cm.

+ t = 0, vật qua x0 = A \(\Rightarrow\left\{ \begin{array}{} x_0 = 4\ cm\\ v_0 =0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 1\ cm\\ \sin \varphi = 0 \end{array} \right. \Rightarrow \varphi = 0\)

Vậy phương trình dao động: \(x = 4\cos(20\pi t) \ (cm)\)

 
12 tháng 7 2023

Làm sao để từ hệ ptr 1 suy ra đc hệ ptr 2 ạ

2 tháng 10 2015

Phương trình tổng quát: \(x= A\cos(\omega t +\varphi)\)

Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow (\frac{x}{A})^2+(\frac{v}{\omega A})^2=1\)\(\Rightarrow\left\{ \begin{array}{} A^2 = 16\ \\ \omega^2 A^2 =640 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} A = 4\ \\ \omega =2\pi \end{array} \right.\)

t = 0\(\Rightarrow\left\{ \begin{array}{} x_0 = A/2\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{1}{2}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)

Phương trình dao động: \(x=4\cos(2\pi t +\frac{\pi}{3}) \ (cm)\)