Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là a, b ( m ) ( \(0< a,b< 110\) )
Theo bài, ta có hệ phương trình: \(\hept{\begin{cases}a-b=17\\ab=110\end{cases}}\)
Đặt \(c=-b\)\(\Rightarrow\hept{\begin{cases}a+c=17\\a.c=-110\end{cases}}\)
\(\Rightarrow\)a và c là nghiệm của của phương trình: \(x^2-17x-110=0\)
\(\Delta=\left(-17\right)^2-4.1.\left(-110\right)=729\)
\(\Rightarrow\sqrt{\Delta}=\sqrt{729}=27\)
\(\Rightarrow x_1=\frac{-\left(-17\right)+27}{2}=\frac{17+27}{2}=\frac{44}{2}=22\)
\(x_2=\frac{-\left(-17\right)-27}{2}=\frac{17-27}{2}=\frac{-10}{2}=-5\)
\(\Rightarrow a=x_1=22\); \(c=x_2=-5\)
mà \(-b=c\)\(\Rightarrow b=-c=-\left(-5\right)=5\)
Vậy chiều dài là 22m, chiều rộng là 5m
Gọi chiều dài của mảnh đất hình chữ nhật là x (m, x > 4)
Khi đó chiều rộng của mảnh đất hình chữ nhật là \(\frac{240}{x}\left(m\right)\)
Khi tăng chiều rộng 3m, giảm chiều dài 4m thì diện tích mảnh đất là:
\(\left(x-4\right)\left(\frac{240}{x}+3\right)\)
Do diện tích không đổi nên ta có phương trình:
\(\left(x-4\right)\left(\frac{240}{x}+3\right)=240\)
\(\Rightarrow240+3x-\frac{960}{x}-12=240\)
\(\Rightarrow3x^2-12x-960=0\Rightarrow\orbr{\begin{cases}x=20\left(n\right)\\x=-16\left(l\right)\end{cases}}\)
Vậy chiều dài mảnh đất là 20m, chiều rộng mảnh đất là 12m.
Gọi chiều rộng của mảnh đất là x (m, x > 0).
Diện tích bằng 240 m 2 ⇒ Δ = 3 2 – 4 . 1 . ( - 180 ) = 729 ⇒ Chiều dài mảnh đất là: (m).
Diện tích mảnh đất sau khi tăng chiều rộng 3m, giảm chiều dài 4m là:
Theo bài ra: diện tích mảnh đất không đổi nên ta có phương trình:
Có a = 1; b = 3; c = -180
Phương trình có hai nghiệm:
Trong hai nghiệm chỉ có nghiệm x = 12 thỏa mãn điều kiện.
Vậy mảnh đất có chiều rộng bằng 12m, chiều dài bằng 240 : 12 = 20 (m).
Gọi chiều rộng của mảnh đất là x (m, x > 0).
Diện tích bằng 240 m2 ⇒ Chiều dài mảnh đất là: (m).
Diện tích mảnh đất sau khi tăng chiều rộng 3m, giảm chiều dài 4m là:
Theo bài ra: diện tích mảnh đất không đổi nên ta có phương trình:
Có a = 1; b = 3; c = -180 ⇒ Δ = 32 – 4.1.(-180) = 729
Phương trình có hai nghiệm:
Trong hai nghiệm chỉ có nghiệm x = 12 thỏa mãn điều kiện.
Vậy mảnh đất có chiều rộng bằng 12m, chiều dài bằng 240 : 12 = 20 (m).
Gọi chiều dài của hình chữ nhật ban đầu là x , m , x>15 \(x\in R\)
=> Chiều rộng của hình chữ nhật ban đầu là x-15 , m
=> Diện tích của hình chữ nhật ban đầu là \(x\left(x-15\right)\) , m2
Theo bài ra ta có :
Chiều dài của hình chữ nhật mới là : x + 5 , m
Chiều rộng của hình chữ nhật mới là : x - 5 , m
=> Diện tích hình chữ nhật mới là : \(\left(x+5\right)\left(x-5\right)\) , m2
Theo giả thiết đề nên ta có phương trình :
\(\left(x+5\right)\left(x-5\right)-x\left(x-15\right)=650\)
<=> x = 35,25 m
vậy chiều dài ban đầu là 35,25 m
chiều ring ban đầu là 20,25 m
Bài giải:
Gọi chiều rộng của mảnh đất là x (m), x > 0.
Vì diện tích của mảnh đất bằng 240 m2 nên chiều dài là: (m)
Nếu tăng chiều rộng 3m và giảm chiều dài 4m thì mảnh đất mới có chiều rộng là x + 3 (m), chiều dài là (240/X - 4) (m) và diện tích là:
(x + 3)( 240/x- 4) ( m2 )
Theo đầu bài ta có phương trình: (x + 3)(240/x - 4) = 240
Giải phương trình:
Từ phương trình này suy ra:
-4x2 – 12x + 240x + 720 = 240x hay:
x2 + 3x – 180 = 0
Giải phương trình: ∆ = 32 + 720 = 729, √∆ = 27
x1 = 12, x2 = -15
Vì x > 0 nên x2 = -15 không thỏa mãn điều kiện của ẩn. Do đó chiều rộng là 12m, chiều dài là: 240 : 12 = 20(m)
Trả lời: Mảnh đất có chiều rộng là 12m, chiều dài là 20m.
Bài giải:
Gọi chiều rộng của mảnh đất là x (m), x > 0.
Vì diện tích của mảnh đất bằng 240 m2 nên chiều dài là: (m)
Nếu tăng chiều rộng 3m và giảm chiều dài 4m thì mảnh đất mới có chiều rộng là x + 3 (m), chiều dài là ( - 4) (m) và diện tích là:
(x + 3)( - 4) ( m2 )
Theo đầu bài ta có phương trình: (x + 3)( - 4) = 240
Giải phương trình:
Từ phương trình này suy ra:
-4x2 – 12x + 240x + 720 = 240x hay:
x2 + 3x – 180 = 0
Giải phương trình: ∆ = 32 + 720 = 729, √∆ = 27
x1 = 12, x2 = -15
Vì x > 0 nên x2 = -15 không thỏa mãn điều kiện của ẩn. Do đó chiều rộng là 12m, chiều dài là: 240 : 12 = 20 (m)
Trả lời: Mảnh đất có chiều rộng là 12m, chiều dài là 20m.
Gọi chiều dài hcn là x(m)Đk x>17
thì chiều rộng hcn là x-17(m)
Theo đề bài ta có
x(x-17)=110
⇔\(x^2-17x-110=0\)
△=\(\left(-17\right)^2-4\cdot\left(-110\right)=729\)
\(\sqrt{\Delta}=\sqrt{729}=27>0\)
⇒Pt có 2 nghiệm pb
x1=\(\dfrac{17-27}{2\cdot1}=--5\left(L\right)\)
x2=\(\dfrac{17+27}{2\cdot1}=22\left(N\right)\)
Vậy chiều dài hcn là 22 (m)
thì chiều rộng hcn là 22-17=5(m)