K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 6 2019

\(C_8^5=C_8^3\) cách phân công

10 tháng 7 2018

dể thấy : số cách sắp xếp để 2 học sinh \(A;B\) ngồi cùng bàn là : \(30\)

số cách sắp xếp chổ ngồi cho 2 bạn \(A;B\)\(C^2_{30}=435\)

\(\Rightarrow\) sác xuất để hai học sinh \(A;B\) ngồi cùng bàn là \(P=\dfrac{\left|\Omega_A\right|}{\left|\Omega\right|}=\dfrac{30}{435}=\dfrac{2}{29}\)

11 tháng 11 2016

c1) có 5 hs.

c2)có 16! = 8!*8!*16c8 cách

7 tháng 7 2018

Đáp án A

Số cách chọn 4 học sinh bất kì n ( Ω )   =   C 35 4   =   52360  (cách).

Số cách chọn 4 học sinh chỉ có nam hoặc chỉ có nữ là C 20 4 + C 15 4   =   6210  (cách).

Do đó số cách chọn 4 học sinh có cả nam và nữ là n(A) = 52360 - 6210 = 46150 (cách).

Vậy xác suất cần tính là 

12 tháng 9 2020

\(\Omega=C^2_{52}.C^2_{52}\)

a) Trong mỗi bộ có 4 lá K nên số trường hợp rút được 2 K là \(C^2_4\)

\(\Rightarrow P=\frac{C_4^2.C_4^2}{C_{52}^2.C_{52}^2}=\frac{1}{48841}\)

b) Vì bích, rô , nhép, cơ mỗi bộ có 13 lá nên số trường hợp rút được 1 lá mỗi loại là: \(\left(C_{13}^1\right)^4\)

Vì mỗi bộ chỉ được rút 2 lá nên nếu bộ 1 rút được 2 nguyên tố này thì bộ 2 phải rút được 2 nguyên tố kia

---> Số trường hợp bốc được: \(C_4^2\)

\(\Rightarrow P=\frac{C_4^2.\left(C_{13}^1\right)^4}{\left(C_{52}^2\right)^2}=\frac{169}{1374}\)

c) Nếu bộ 1 bốc được 2 con Q nguyên tố này thì 2 con Q của các nguyên tố còn lại phải nằm ở bộ 2

---> Số trường hợp bốc: \(C_4^2\)

\(\Rightarrow P=\frac{C_4^2}{\left(C_{52}^2\right)^2}=\frac{1}{293046}\)

23 tháng 7 2017

Ta đếm số cách chọn 4 học sinh từ đội xung kích mà thuộc cả 3 lớp ở trên.

Phương án 1: Chọn 2 học sinh lớp A, 1 học sinh lớp B và 1 học sinh lớp C.

Số cách chọn trong trường hợp này là .

Phương án 2: Chọn 1 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C.

Số cách chọn trong trường hợp này là  .

Phương án 3: Chọn 1 học sinh lớp A, 1 học sinh lớp B và 2 học sinh lớp C.

Số cách chọn trong trường hợp này là .

Theo quy tắc cộng thì số cách chọn 4 học sinh thuộc đủ cả ba lớp là 120 + 90 + 60 = 270.

Trong khi số cách chọn 4 học sinh bất kỳ từ đội xung kích là .

Vậy số cách chọn 4 học sinh mà các học sinh không thuộc quá hai lớp là 495 -270 =225.

Chọn C.

11 tháng 4 2020

Bạn ơi mình nghĩ bài này phải chia trường hợp ra

VD : TH1: xếp vào tổ 1 : 2 hsg, 2 học sinh khá và 4 học sinh TB thì sẽ có \(C_3^2.C^2_5.C^4_8\) cách chọn

Tương tự các trường hợp còn lại

Mọi người góp ý giúp mình nha

NV
12 tháng 4 2020

Do ko phân biệt hai tổ (ko cần hoán vị) nên chỉ cần xếp cho 1 tổ, tổ còn lại là phần còn lại (luôn thỏa mãn khi phần 1 thỏa mãn)

Giả sử ta xếp vào tổ có 2 học sinh giỏi \(\Rightarrow C_3^2=3\) cách chọn (1 hsg kết quả cũng vậy)

- Nếu xếp vào 2 hs khá \(\Rightarrow C_5^2=10\) cách chọn

Còn lại 4 bạn trung bình \(\Rightarrow C_8^4=70\)

\(\Rightarrow700\) cách xếp

- Nếu xếp vào 3 hs khá: \(\Rightarrow C_5^3=10\) cách

Còn 3 bạn trung bình: có \(C_8^3=56\) cách

\(\Rightarrow560\) cách

Tổng cộng có: \(3\left(700+560\right)=3780\) cách

16 tháng 5 2016

Gọi A là tập hợp mọi cách chọn 4 học sinh trong 12 học sinh

Gọi B là tập hợp cách chọn không thỏa mãn yêu cầu đề bài (tức là chọn đủ học sinh 3 lớp)

Gọi C là tập hợp cách chọn thỏa mãn yêu cầu đề bài

Ta có      A = B\(\cup\) C, B \(\cap\) C = \(\varnothing\)

Theo quy tắc cộng ta có

\(\left|A\right|\) = \(\left|B\right|\) + \(\left|C\right|\) \(\Rightarrow\) \(\left|C\right|\) = \(\left|A\right|\) - \(\left|B\right|\)               (1)

Dễ thấy \(\left|A\right|\) = \(C_{12}^4\) = 495

Để tính \(\left|B\right|\), ta nhận thấy sẽ chọn một lớp có 2 học sinh, còn 2 lớp còn lại mỗi lớp 1 học sinh. Vì thế theo quy tắc cộng và phép nhân, ta có:

\(\left|B\right|\) = \(C_5^2\)\(C_4^1\)\(C_3^1\) + \(C_5^1\)\(C_4^2\)\(C_3^1\) + \(C_5^1\)\(C_4^1\)\(C_3^2\) = 120 + 90 + 60 = 270

Thay vào (1) ta có \(\left|C\right|\) = 495 - 270 = 225

Vậy có 225 cách chọn.

16 tháng 5 2016

Số cách chọn 4 học sinh từ 12 học sinh đã cho là : C412=495C124=495

Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau :

* Lớp AA có 2 học sinh, các lớp BBCC mỗi lớp 1 học sinh.

 Số cách chọn là : C25.C14.C13=120C52.C41.C31=120

* Lớp BB có 2 học sinh, các lớp AACC mỗi lớp 1 học sinh.

 Số cách chọn là : C15.C24.C13=90C51.C42.C31=90
Lớp CC có 2 học sinh, các lớp AABB mỗi lớp 1 học sinh.

 Số cách chọn là : C15.C14.C23=60C51.C41.C32=60

Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là :

120+90+60=270120+90+60=270

Vậy số cách chọn phải tìm là : 495270=225495−270=225 cách.