\(\frac{1}{2}\)tấm thứ nhất,ấm v...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

- Gọi chiều dài ba tấm vải lần lượt là a;b;c(m; a;b;c\(∈\) N*)

- Theo đề bài ta có:

   + Sau khi bán 1/2 tấm thứ nhất thì tấm thứ nhất còn lại: a−a.1/2 =a.1/2 =a/2 (1)

   + Sau khi bán 2/3 tấm thứ hai thì tấm thứ hai còn lại: b−b.2/3 =b.1/3 =b/3 (2)

   + Sau khi bán 3/4 tấm vải thứ ba thì tấm thứ ba còn lại: c−c.3/4 =c.1/4 =c4 (3)

Mà lúc đó số mét vải còn lại ở ba tấm bằng nhau ⇒a/2 =b/3 =c/4 

   + Ba tấm vải dài tổng cộng 108m  \(⇒\) a+b+c=108(m)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

a/2 =b/3 =c/4 =a+b+c/2+3+4 =108/9 =12

⇒a=12.2=24(m) ; b=12.3=36(m)c=12.4=48(m)

14 tháng 11 2016

Ta có:1/2 tấm 1=1/3 tấm 2 =1/4 tấm 3

Tấm 1 hai phần;tấm 2 ba phần;tấm 3 bốn phần

Tấm 1:108:(2+3+4)x2=24(m)

Tấm 2:24:2x3=36(m)

Tấm 3:36:3x4=48(m)

                      Đáp số:Tấm 1:24m

                                  Tấm 2:36m

                                   Tấm 3:48m

14 tháng 7 2019

Ta có :

 \(\frac{1}{2}\)tấm thứ nhất= \(\frac{1}{3}\)tấm thứ 2= \(\frac{1}{4}\)tấm thứ 3

tỉ số giứa 3 loại vải là:

\(\frac{1}{2}\):\(\frac{1}{3}\):\(\frac{1}{4}\)=2:1,5:1

Số m vải thứ nhất là 

126:(2+1.5+1)*2=56(m)

Số m vải thứ hai là 

126:(2+1.5+1)*1.5=42(m)

Số m vải thứ ba là

126-56-42=28(m)

Đáp số: tấm vải thứ nhất :56 m

             tấm vải thứ hai : 42 m

             tấm bải thứ ba : 28 m

30 tháng 8 2021

Gọi độ dài của 3 tấm vải lần lượt là x,y,zx,y,z (x,y,z>0x,y,z>0)

Khi đó, do tổng độ dài của chúng là 126m nên ta có

x+y+z=126

Sau khi bán, thì tấm vải thứ nhất còn \(\frac{1}{2}\), tấm vải thứ hai còn \(\frac{1}{3}\), và tấm vải thứ 3 còn \(\frac{1}{4}\). Vậy ta có

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tchat dãy tỉ số bằng nhau ta có

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{126}{9}=14\)

\(\frac{x}{2}=14\Rightarrow x=28\)

\(\frac{y}{3}=14\Rightarrow y=42\)

\(\frac{z}{4}=14\Rightarrow56\)

Do đó, độ dài tấm vải thứ nhất là 28m, độ dài tấm vải thứ 2 là 42m, độ dài tấm vải thứ 3 là 56m.

30 tháng 8 2021

tấm vải thứ nhất là :

126 .1/2= 63 ( cm)

tấm vải thứ 2 lÀ  :

126.2/3=84 (cm)

tấm vải thứ 3 là :

126.3/4=94,5 (cm)

chiều dài 3 tấm vải lúc ban đầu là :

63+84+94,5 =241,5( cm)

mik chỉ bt làm vậy thôi nhé , k bt đúng hay sai nữa , nếu đúng thì chép , sai thì cho mình xin lỗi trược ạ 

#hoctot

18 tháng 4 2017


Gọi chiều dài mỗi tấm vải lần lượt là x (m); y (m); z (m) Theo đề, ta có: x/2 = y/3 = z/4 và x + y + z = 108 Theo tính chất của dãy tỉ số bằng nhau, ta có: Vậy Tấm vải 1 dài 24 mét; Tấm vải 2 dài 36 mét; Tấm vải 3 dài 48 mét.

13 tháng 8 2018

Gọi chiều dài tấm vải thứ 1 là x, tấm vải thứ 2 là y, tấm vải thứ 3 là z (ĐK: x,y,z > 0 ) (m)

Vì 3 tấm vải dài tổng cộng là 108 (m)

⇒ x+y+z=108 (1)

Sau khi bán đi tấm vải thú 1 được :

1-1/2=1/2

Sau khi bán tấm vải thứ 2 được :

1-2/3=1/3

Sau khi bán tấm vải thứ 3 được :

1-3/4=1/4 (2)

Từ (1) và (2), ta có:

x/2=y/3=z/4=x+y+z/2+3+4=108/9=12

Ta có :

x/2=12⇒x=24

y/3=12⇒y=36

z/4=12⇒z=48

Vậy tấm vải 1 dài 24 m, tấm vải 2 dài 36 m, tấm vải 3 dài 48 m

17 tháng 8 2016

gọi 3 tấm vải ban đầu có độ dài lần lượt là x , y , z
x+y +z = 108
sau đi bán 1/2 tấm vải một vậy tấm vải 1 còn lại ( 1-1/2).x = 1/2.x
sau đi bán 2/3 tấm vải một vậy tấm vải 1 còn lại ( 1-2/3).y = 1/3.y
sau đi bán 1/2 tấm vải một vậy tấm vải 1 còn lại ( 1-3/4).z = 1/4.z

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{y}=\frac{x+y+z}{2+3+4}=\frac{108}{9}=12\)

\(\Rightarrow x=24\)

\(\Rightarrow y=36\)

\(\Rightarrow z=48\)

Vậy ba tấm vải có chiều dài lần lượt là 24 m , y = 36 m , z = 48 m

17 tháng 8 2016

Gọi chiều dài ban đầu của tấm vải thứ nhất, thứ hai vaf thứ 3 lần lượt là a, b và c (a, b, c \(\in\) N)

Theo bài ra: Cắt tấm vải thứ nhất đi \(\frac{1}{2}\) thì còn lại là: \(1-\frac{1}{2}=\frac{1}{2}\) 

Cắt tấm vải thứ hai đi \(\frac{2}{3}\) thì còn lại là: \(1-\frac{2}{3}=\frac{1}{3}\)

Cắt tấm vải thứ ba đi \(\frac{3}{4}\) thì còn lại là: \(1-\frac{3}{4}=\frac{1}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{1}{2}a=\frac{1}{3}b=\frac{1}{4}c\)              \(BCNN\left(1;1;1\right)=1\)

\(\frac{1a}{2.1}=\frac{1b}{3.1}=\frac{1c}{4.1}\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)

Tấm vải thứ nhất dài là: \(\frac{a}{2}=12\Rightarrow a=24\) (m)

Tấm vải thứ hai dài là: \(\frac{b}{3}=12\Rightarrow b=36\) (m)

Tấm thứ ba dài là: \(\frac{c}{4}=12\Rightarrow c=48\) (m)

Đáp số: Tấm vải thứ nhất: 24 m

Tấm vải thứ 2: 36 m

Tấm vải thứ 3: 48 m

NM
20 tháng 8 2021

Gọi x,y,z lần lượt là độ dài của các tấm vải thứ nhất , thứ hai và thứ 3

ta có số vải còn lại là : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{126}{9}=14\)

\(\Rightarrow\hept{\begin{cases}x=2\times14=28m\\y=3\times14=42m\\z=4\times14=56m\end{cases}}\)

20 tháng 8 2021

Gọi độ dài lúc đầu tấm vải thứ nhất, thứ hai và thứ ba lần lượt là a, b, c (m)

ĐK: 0 < a, b, c < 126

+) Theo bài ra ta có: a + b + c = 126

+) Sau khi họ bán đi 1/2 tấm vải thứ nhất thì tấm vải thứ nhất còn lại:

\(a-\frac{a}{2}=\frac{a}{2}\)        (1)

+) Sau khi họ bán đi 2/3 tấm vải thứ hai thì tấm vải thứ hai còn lại:

\(b-\frac{2b}{3}=\frac{b}{3}\)      (2)

+) Sau khi họ bán đi 3/4 tấm vải thứ ba thì tấm vải thứ ba còn lại:

\(c-\frac{3c}{4}=\frac{c}{4}\)     (3)

Từ (1); (2); (3)

=> Áp dụng tính chất dãy tỉ số bằng nhau và a + b + c = 126

\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{126}{9}=14\)

=> a = 28 (t/m)

     b = 42 (t/m)

     c = 56 (t/m)

Vậy, độ dài lúc đầu của tấm vải thứ nhất, thứ hai và thứ ba lần lượt là 28m, 42m, 56m

31 tháng 10 2016

Gọi chiều dài 3 tấm vải lần lượt là a;b;c (m) (a;b;c > 0)

Vì tổng chiều dài 3 tấm vải là 108 m nên a + b + c = 108

Do sau khi bán \(\frac{1}{2}\) tấm thứ nhất, \(\frac{2}{3}\) tấm thứ hai và \(\frac{3}{4}\) tấm thứ 3 thì số m vải còn lại ở 3 tấm bằng nhau nên

\(a-\frac{1}{2}a=b-\frac{2}{3}b=c-\frac{3}{4}c\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{b}{4}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)

\(\Rightarrow\begin{cases}a=12.2=24\\b=12.3=36\\c=12.4=48\end{cases}\)

Vậy tấm vải thứ nhất dài 24 m, tấm vải thứ 2 dài 36 m, tấm vải thứ 3 dài 48 m