Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
1.
Gọi số cần tìm là ab
Theo đề ra ta có:45.ab =32.5(10a+b)
Để ab là số chính phương thì ab phải chia hết cho 5
=>b=0 hoặc b=5
+)b=0
32.5.(10a+0)=32.5.10a=32.5.5.2a=32.52.2a
Để ab là số chính phương=>2a thuộc 1,4,9
=>a=2
=>ab =20
+)b=5
32.5.(10a+5)=32.5.5.(2a+1)=32.52.(2a+1)
Để ab là số chính phương=>2a+1 là số chính phương
=>2a+1 thuộc 1,4,9
=>2a thuộc 0,3,8
=>a=4
=>ab =45
Vậy số cần tìm là 20,45
CHÚC BẠN HỌC TỐT
n chia 8 dư 7 ⇒⇒ (n+1) chia hết cho 8
n chia 31 dư 28 nên (n+3) chia hết cho 31
Ta có ( n+ 1) +64 chia hết cho 8 ( vì 64 chia hết cho 8)
= (n+3) + 62 chia hết cho 31
Vậy (n+65) vừa chia hết cho 31 và 8
Mà (31,8) = 1( ước chung lớn nhất)
⇒⇒ n+65 chia hết cho 248
Ta thấy Vì n<=999 nên (n+65) ⇐⇐ 1064
⇔⇔ (n+65)/ 248 <= 4,29
Vì (n+65)/ 248 nguyên và n lớn nhất nên (n+65)/ 248 = 4
⇒⇒ n= 927
a) Đặt A = 20184n + 20194n + 20204n
= (20184)n + (20194)n + (20204)n
= (....6)n + (....1)n + (....0)n
= (...6) + (...1) + (...0) = (....7)
=> A không là số chính phương
b) Đặt 1995 + n = a2 (1)
2014 + n = b2 (2)
a;b \(\inℤ\)
=> (2004 + n) - (1995 + n) = b2 - a2
=> b2 - a2 = 9
=> b2 - ab + ab - a2 = 9
=> b(b - a) + a(b - a) = 9
=> (b + a)(b - a) = 9
Lập bảng xét các trường hợp
b - a | 1 | 9 | -1 | -9 | 3 | -3 |
b + a | 9 | 1 | -9 | -1 | -3 | 3 |
a | -4 | 4 | 4 | -4 | -3 | 3 |
b | 5 | 5 | -5 | -5 | 0 | 0 |
Từ a;b tìm được thay vào (1)(2) ta được
n = -1979 ; n = -2014 ;