Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow6x^2-9x-32x+48=0\)
\(\Leftrightarrow3x\left(2x-3\right)-16\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{16}{3}\end{matrix}\right.\)
\(x^3-6x^2+2x+3=0\)
\(\Leftrightarrow x^3-5x^2-3x-x^2+5x+3=0\)
\(\Leftrightarrow x\left(x^2-5x-3\right)-\left(x^2-5x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-5x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x^2-5x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\\Delta_{x^2-5x-3}=\left(-5\right)^2-\left[-4\left(1.3\right)\right]=37\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x_{1,2}=\frac{5\pm\sqrt{37}}{2}\end{array}\right.\)
1) -3x2+5x=0
-x(3x-5)=0
suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5
2) x2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x-2)(x+3)=0
suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3
3) x2+6x-x-6=0
x(x+6)-(x+6)=0
(x-1)(x+6)=0. vậy nghiệm là 1 và -6
4) x2+2x-3x-6=0
x(x+2)-3(x+2)=0
(x-3)(x+2)=0
vậy nghiệm là -2 và 3
5) x(x-6)-4(x-6)=0
(x-4)(x-6)=0. vậy nghiệm là 4 và 6
6)x(x-8)-3(x-8)=0
(x-3)(x-8)=0
suy ra nghiệm là 3 và 8
7) x2-5x-24=0
x2-8x+3x-24=0
x(x-8)+3(x-8)=0
(x+3)(x-8)=0
vậy nghiệm là -3 và 8
câu 1: -3x2 + 5x = 0
suy ra -x(3x-5)=0
sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3
a) x3 = 25x
=> x3 - 25x = 0
=> x(x2 - 25) = 0
=> x(x - 5)(x + 5) = 0
=> x = 0 hoặc x - 5 = 0 hoặc x + 5 = 0
=> x = 0 hoặc x = 5 hoặc x = -5
b) x2 - 6x + 8 = 0
=> x2 - 6x + 9 - 1 = 0
=> (x - 3)2 - 12 = 0
=> (x - 3 - 1)(x - 3 + 1) = 0
=> (x - 4)(x - 2) = 0
=> \(\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta thấy \(VT\ge0\forall x;y\) nên dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)Tha vào M ta được :
\(M=\left(1-1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)
a) (x-2)2 - ( x+3 )2 =5+ 4(x+1)
=> x2 - 4x + 4 - x2 -6x - 9 =5 +4x +4
=> -10x -5 = 9+ 4x
=> -14x =14
=> x = -1
b) 2x3 (2x -3 ) - x2 (4x2 -6x +2) =0
=> 4x4 - 6x3 -4x4 +6x3 -2x2 =0
=> -2x2 =0
=> x2 =0
=> x=0
a) \(2xy-y^2-6x+4y=7\)
\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)
\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)
Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).
b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).
Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).
\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).
suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).
Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương.
\(6x^2-41x+48=0\)
\(\Leftrightarrow3x\left(2x-3\right)-16\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{16}{3}\end{matrix}\right.\)
\(6x^2-41x+48=0\)
\(\Leftrightarrow6x^2-9x-32x+48=0\)
\(\Leftrightarrow3x\left(2x-3\right)-16\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x-16\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-16=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=16\Rightarrow x=\dfrac{16}{3}\\2x=3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy.......................................