K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2016

\(x^3-6x^2+2x+3=0\)

\(\Leftrightarrow x^3-5x^2-3x-x^2+5x+3=0\)

\(\Leftrightarrow x\left(x^2-5x-3\right)-\left(x^2-5x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x^2-5x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\\Delta_{x^2-5x-3}=\left(-5\right)^2-\left[-4\left(1.3\right)\right]=37\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x_{1,2}=\frac{5\pm\sqrt{37}}{2}\end{array}\right.\)

13 tháng 12 2016

ban oi chỗ : x2 - 5x - 3 = ? minh khong hieu cho nay = )))

 

30 tháng 7 2018

1) -3x2+5x=0

-x(3x-5)=0

suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5

2) x2+3x-2x-6=0

x(x+3)-2(x+3)=0

(x-2)(x+3)=0

suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3

3) x2+6x-x-6=0

x(x+6)-(x+6)=0

(x-1)(x+6)=0. vậy nghiệm là 1 và -6

4) x2+2x-3x-6=0

x(x+2)-3(x+2)=0

(x-3)(x+2)=0

vậy nghiệm là -2 và 3

5) x(x-6)-4(x-6)=0

(x-4)(x-6)=0. vậy nghiệm là 4 và 6

6)x(x-8)-3(x-8)=0

(x-3)(x-8)=0

suy ra nghiệm là 3 và 8

7) x2-5x-24=0

x2-8x+3x-24=0

x(x-8)+3(x-8)=0

(x+3)(x-8)=0

vậy nghiệm là -3 và 8

22 tháng 3 2020

câu 1:  -3x2 + 5x = 0

suy ra -x(3x-5)=0

sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3

1 tháng 8 2016
Câu a: x=1 Câu b: đễ thấy là phương trình bậc 2 với 1 ẩn. Giải bình thường là ra
19 tháng 8 2016

a) = x3 + 9x2 + 27x + 27 - 9x3 -6x2 - x + 8x3 +1 -3x2 =54

26x +28 = 54

26x = 54-28 = 26

x = 1

b) = x3 - 9x2 + 27x -27 - x3 +27 +6x2 + 12x + 6 +3x2 = -33

39x +6 = -33

39x = -33-6 = -39

x = -1

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

5 tháng 10 2016

hhhhhhhhhhhhhhhh

Ukm

It's very hard

l can't do it 

Sorry!

 
27 tháng 7 2018

a) \(x^4-x^3-7x^2+x+6=0\)

\(\Leftrightarrow x^4+2x^3-3x^3-6x^2-x^2-2x+3x+6=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x^2\left(x+2\right)-x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x^2-x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-3\right)-\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-3\right)=0\). Làm nốt

b) \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\)

\(\Leftrightarrow2x^2+2xy+y^2+9-6x+\left|y+3\right|=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2-6x+9+\left|y+3\right|=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-3\right)^2+\left|y+3\right|=0\)

Do \(\left(x+y\right)^2\ge0;\left(x-3\right)^2\ge0;\left|y+3\right|\ge0\forall x;y\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)

c) \(\left(2x^2+x\right)^2-4\left(2x^2+x\right)+3=0\)

\(\Leftrightarrow\left(2x^2+x\right)^2-2.\left(2x^2+x\right).2+4-1=0\)

\(\Leftrightarrow\left(2x^2+x-2\right)^2=1\Leftrightarrow\orbr{\begin{cases}2x^2+x-2=1\\2x^2+x-2=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2+x-3=0\\2x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{3}{2}=0\\x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{1}{2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2-\frac{25}{16}=0\\\left(x+\frac{1}{4}\right)^2-\frac{9}{16}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2=\frac{25}{16}\\\left(x+\frac{1}{4}\right)^2=\frac{9}{16}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\pm\frac{5}{4}\\x+\frac{1}{4}=\pm\frac{3}{4}\end{cases}}\)

Từ đó tính đc x

d) \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)

\(\Leftrightarrow\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)=24\)

\(\Leftrightarrow\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]=24\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(x^2+5x+5=a\), khi đó pt có dạng:

\(\left(a-1\right)\left(a+1\right)-24=0\Leftrightarrow a^2-1-24=0\)

\(\Leftrightarrow a^2-25=0\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\Leftrightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2+5x+5=5\\x^2+5x+5=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+5x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{15}{4}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\\left(x+\frac{5}{4}\right)^2=-\frac{15}{4}\left(vn\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

2 tháng 2 2017

b)x^3 - 6x^2 +11x-6=0

<=>x^3 - x^2 - 5x^2 +5x + 6x - 6=0

<=>x^2(x - 1) - 5x(x - 1) +6(x - 1)=0

<=>(x-1).(x^2 - 5x + 6)=0

<=>(x - 1).(x^2 - 2x - 3x + 6)=0

<=>(x - 1).[(x(x-2)-3(x-2)]=0

<=>(x-1)(x-2)(x-3)=0

<=>x-1=0hoac x-2=0 hoac x-3=0

<=>x=1hoac x=2 hoac x=3

1 tháng 2 2017

bạn mua cái máy tính vinacal xog giải nghiệm ra hết thui

28 tháng 9 2018

\(2x\left(x-3\right)-x+3=0\)

<=>  \(2x\left(x-3\right)-\left(x-3\right)=0\)

<=>  \(\left(x-3\right)\left(2x-1\right)=0\)

<=>  \(\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)

Vậy...

19 tháng 2 2018

1     <=>2x^3+2x^2+x^2+x+5x+5=5

       <=>[x+1][2x^2+x+5]

       2x^2+x+5>0=>x=-1

2     Đặt x+1=a; x-2=b;2x-1=a+b

       <=>a^3+b^3=[a+b]^3

       <=>3ab[a+b]=0

       <=>3[x+1][x-2][2x-1]=0

        <=>x=-1 hoặc x=2 hoặc x=1/2

        Vậy phượng trình có tập nghiệm S={-1;2;1/2}

19 tháng 2 2018

1) 2x3 + 3x2 + 6x + 5 = 0 

 2x3+2x2+x2+x+5x+5=0

2x2(x+1)+x(X+1)+5(X+1)=0

(2x2+x+5)(X+1)=0

=> 2x2+x+5= 0 hoặc x+1=0

......