K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

A=1+2+3+...+2018=(1+2018)+(2+2017)+...(1009+1010)=2019x1009=2037171

B=(1+2019)+(3+2017)+...+(1009+1011)=2020x505=1020100

C=(2020+2)+(2018+4)+...+(1010+1012)=2022x505=1021110

24 tháng 7 2018

a) Các số có dạng : \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{1}{a}-\)\(\frac{1}{a+1}\)

Thế vào bởi các số sẽ có kết quả

b) Các số có dạng : \(\frac{1}{a\left(a+2\right)}=\frac{1}{2}.\frac{2}{a\left(a+2\right)}=\frac{1}{2}.\frac{\left(a+2\right)-a}{a\left(a+2\right)}\)\(=\frac{1}{2}.\left(\frac{1}{a}-\frac{1}{a+2}\right)\)

Làm tương tự trên

c) Lấy nhân tử chung là 5 rồi làm như câu a)

24 tháng 7 2018

bạn có thể làm ra hộ mình được ko mình ko hiểu

Bài 2: 

Ta có: \(16x+40=10\cdot3^2+5\left(1+2+3\right)\)

\(\Leftrightarrow16x+40=90+30\)

\(\Leftrightarrow16x=80\)

hay x=5

5 tháng 10 2021

Bài 1 :

[( 35 - 5 ) : 3 ]3 + 3

= [30 : 3]3 + 3

= 103 + 3

= 1000 + 3

= 1003

Đây nha bạn!!!

Chúc bạn học tốt!!!hihi

18 tháng 9 2023

B = 22021  - 22020 - 22019 -...- 2 -1

B = 22021 - (22020 + 22019 +...+2 +1)

Đặt         C =              22020 + 22019 +...+ 2 + 1

             2C = 22021 + 22020 + 22019+....+ 2 + 1

       2C - C = 22021 - 1

               C = 22021 - 1

B = 22021 - (22021 -1)

B = 22021 - 22021 + 1

B  = 1

4 tháng 4 2020

\(A=1-3+5-7+......-2019+2021-2023\)

\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)

\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)

\(A=-2.506\)

\(A=-1012\)

4 tháng 4 2020

*) A=(1-3)+(5-7)+....+(2021-2023)

<=> A=-2+(-2)+...+(-2)

Dãy A có (2023-1):2+1=1012 số số hạng 

=> Có 506 số (-2)

=> A=(-2).506=-1012

3 tháng 1 2017

-(+15)-12=-27

0-(+7)=-7

0-(-5)=5

Tk cho mk nha

3 tháng 1 2017

1. 

-15 - 12 = -15 + (-12) = -27 

0+ (-7)= 0-7 = -7 

0-(-5) = 0 + 5 = 5 

đap số 1 . - 27 

2. -7

3. 5

17 tháng 3 2022

ok

bye

20 tháng 12 2016

a) \(D=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)

\(\Rightarrow7D=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)

\(\Rightarrow7D-D=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)

\(\Rightarrow6D=1-\frac{1}{7^{100}}\)

\(\Rightarrow D=\left(1-\frac{1}{7^{100}}\right).\frac{1}{6}\)