K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

tick đi mh trả lời cho*có lời giải*

31 tháng 12 2015

bạn lên google thử chứ tụi này mới lớp 6 ah

3 tháng 6 2019

#)Giải :

Giả sử có số hữu tỉ \(\frac{a}{b}\left(a,b\in N;ƯCLN\left(a,b\right)=1;b\ne0\right)\)mà bình phương bằng 3

Ta có : \(\left(\frac{a}{b}\right)^2=3\)

\(\Leftrightarrow a^2=3b^2\)

\(a^2⋮3^2\Rightarrow3b^2⋮3^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)

Vì \(a⋮3\)và \(b⋮3\)nên \(ƯCLN\left(a,b\right)\ge3\)( vô lí ) 

Vậy không có số hữu tỉ nào mà bình phương bằng 3

            #~Will~be~Pens~#

3 tháng 6 2019

Link nek

https://olm.vn/hoi-dap/detail/106839914043.html

Hok tốt

26 tháng 8 2016

đề sai nhé, có số hữu tỉ bình phương = 2 mà

26 tháng 8 2016

Giả sử tồn tại số hữu tỉ có bình phương bằng 2, là \(\frac{m}{n}\)( ƯCLN(m;n) = 1 )

\(\Rightarrow\frac{m^2}{n^2}=2\)

\(\Rightarrow m^2=2n^2\)

Mà ƯCLN(m;n)=1 nên \(m^2\)chia hết cho 2

\(\Rightarrow m\)chia hết cho 2 ( vì 2 là số nguyên tố )

Đặt \(m=2k\)

\(\Rightarrow4k^2=2n^2\)

\(\Rightarrow n^2=2k^2\)

Tương tự, n phải chia hết cho 2

DO đó ƯCLN(m;n) = 2, trái với điều kiện.

Vậy ...

8 tháng 11 2021
  • Viết hai số hữu tỉ dưới dạng hai phân số có cùng một mẫu dương (bằng cách quy đồng mẫu của chúng)
  • Cộng, trừ hai tử số, mẫu chung giữ nguyên;
  • Rút gọn kết quả (nếu có thể)
  • HT
  • Nhớ k nhen
1 tháng 6 2017

À...... Mk sẽ cố gắng trả lời vắn tắt nhất cho bạn... Có nhu cầu thì kb nhé! ;))

OK. Với x= a/m, y=b/m(a,b,m thuộc Z, m khác 0)

Ta có : x+y= a/m+b/m= a+b/m ; x-y= a/m -b/m= a-b/m

Thế thôi! Ah, còn ví dụ.

 Ví dụ về phép cộng: 1/9 + 3/9 = 1+3/9 =4/9

Ví dụ về phép trừ: 5/9 -1/9 = 5-1/9 = 4/9

That's all......

20 tháng 7 2017

 giả sử tồn tại số hữu tỉ có bình phương bằng 2 

coi số đó là a/b ( a;b thuộc N*,(a;b)= 1)

ta có (a/b)^2 = 2 => a^2 = 2 b^2 => a^2 chia hết cho 2 => a^2 chia hết cho 4 => b^2 chia hết cho 2 => b chia hết cho 2 => UC(a;b)={1;2}

=> trái vs giả sử => ko tồn tại hữu tỉ có bình phương bằng 2 

CM tương tự vs 3 và 6 nhé

19 tháng 8 2016

hình như là không có vì \(\sqrt{2}\) là một số vô tỉ => ko có số nào bình phương = 2

19 tháng 8 2016

Ko có đau bạn ạ