Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
( x +1 ) ( x + 4 ) = 5 căn ( x^2 + 5x +28 ) (1)
= ( x + 1 ) ( x + 4 ) = 5 căn [ (x^2 + 5x + 4) + 24 ]
= ( x + 1 ) ( x + 4 ) = 5 căn [ ( x + 1 ) ( x + 4 ) + 24 ]
Đặt a = ( x + 1 ) ( x + 4 )
(1) <=> a = 5 căn ( a + 24 )
<=> a^2 = 25 ( a + 24 )
<=> a^2 - 25a - 600 = 0
<=> a1 = 40
a2 = -15
với a = 40 ta có:
( x + 1 ) ( x + 4 ) = 40
<=> x^2 + 5x + 4 = 40
<=> x^2 + 5x - 36 = 0
<=> x = 4 và x = - 9
với a = -15, ta có:
( x + 1 ) ( x + 4 ) = -15
<=> x^2 + 5x + 4 = -15
<=> x^2 + 5x + 19 = 0
delta < 0 => pt vô nghiệm
Vậy s = { -9; 4}
Ta viết lại phương trình thành:
\(\left(2x-1\right)^3-\left(x^2-x-1\right)=\left(x+1\right)\sqrt[3]{\left(x+1\right)\left(2x-1\right)+x^2-x-1}\)
Đặt: \(a=2x-1;b=\sqrt[3]{\left(x+1\right)\left(2x-1\right)+x^2-x-1}=\sqrt[3]{3x^2-2}\) ta thu được hệ phương trình:
\(\hept{\begin{cases}a^3-\left(x^2-x+1\right)=\left(x+1\right)b\\b^3-\left(x^2-x+1\right)=\left(x+1\right)a\end{cases}}\)
Trừ 2 pt của hệ cho nhau ta được: \(\left(a-b\right)\left(a^2+ab+b^2+x+1\right)=0\)
Trường hợp 1: \(a=b\) ta có:
\(2x-1=\sqrt[3]{3x^2-2}\Leftrightarrow8x^3-15x^2+6x+1=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{8}\end{cases}}\)
Trường hợp 2: \(a^2+ab+b^2+x+1=0\Leftrightarrow\left(a+\frac{b}{2}\right)^2+\frac{3}{4}\left(2x-1\right)^2+x+1=0\)
\(\Leftrightarrow4\left(a+\frac{b}{2}\right)^2+4x^2+2\left(2x-1\right)^2+5=0\left(vn\right)\)
Vậy pt có 2 nghiệm là: \(x=1;x=-\frac{1}{8}\)
ĐK \(x\ge-2\)
pT<=> \(2\left(x+1\right)\sqrt{x+2}+2\left(x+6\right)\sqrt{x+7}=2x^2+14x+24\)
<=>\(\left(x+1\right)\left(x+2-2\sqrt{x+2}\right)+\left(x+6\right)\left(x+4-2\sqrt{x+7}\right)+x-2=0\)
<=>\(\frac{\left(x+1\right)\left(x^2-4\right)}{x+2+2\sqrt{x+2}}+\frac{\left(x+6\right)\left(x^2+4x-12\right)}{x+4+2\sqrt{x+7}}+x-2=0\forall x>-2\)
=> \(\orbr{\begin{cases}x=2\\\frac{\left(x+1\right)\left(x+2\right)}{x+2+2\sqrt{x+2}}\end{cases}}+\frac{x+6}{x+4+2\sqrt{x+7}}+1=0\left(2\right)\)
Pt (2) + \(x\ge-1\)=> \(VT>0\)=> PT (2) vô nghiệm
+ \(-2< x\le-1\)=> \(\frac{\left(x+1\right)\left(x+2\right)}{x+2+2\sqrt{x+2}}>-1\)=> \(VT>0\)=> PT vô nghiệm
Vậy x=2
c,chia cả tử và mẫu cho x,sau đó đặt 3x+2/x=t
các câu còn lại hiện chưa giải đc vì chưa có giấy nháp,lúc nào rảnh mình chỉ cho cách làm
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
\(\Leftrightarrow\left(x^2+5x+5\right)^2-1=24\)
\(\Leftrightarrow\left(x^2+5x+5\right)^2=25\)
Mà \(x^2+5x+5>0\forall x\)
\(\Rightarrow x^2+5x+5=5\Rightarrow x\left(x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy pt có tập nghiệm S={0,-5}
pt <=> (x+1).(x+2).(x+3).(x+4) = 24
<=> [(x+1).(x+4)].[(x+2).(x+3)] = 24
<=> (x^2+5x+4).(x^2+5x+6) = 24
<=> (x^2+5x+5)^2-1 = 24
<=> (x^2+5x+5) = 25
=> x^2+5x+5 = 5 [ vì x^2+5x+5 = (x+2,5)^2-0,25 >= -0,25 > -5 ]
=> x=0 hoặc x=-5
Vậy pt có tập nghiệm S = {-5;0}
k mk nha
a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0
=> hoặc (3x2 - 7x – 10) = 0 (1)
hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)
Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0
nên
x1 = - 1, x2 = =
Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0
nên
x3 = 1, x4 =
b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0
=> hoặc x + 3 = 0
hoặc x2 - 2 = 0
Giải ra x1 = -3, x2 = -√2, x3 = √2
c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0
=> hoặc 0,6x + 1 = 0 (1)
hoặc x2 – x – 1 = 0 (2)
(1) ⇔ 0,6x + 1 = 0
⇔ x2 = =
(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5
x3 = , x4 =
Vậy phương trình có ba nghiệm:
x1 = , x2 = , x3 = ,
d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0
⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0
⇔ (2x2 + x)(3x – 10) = 0
⇔ x(2x + 1)(3x – 10) = 0
Hoặc x = 0, x = , x =
Vậy phương trình có 3 nghiệm:
x1 = 0, x2 = , x3 =
Nhân 2 vào cả hai vế của phương trình đầu tiên ta được:
\(2x\left(x+y\right)+2y^2=8y-2\)
Sau đó cộng hai vế tương ứng với pt thứ hai, ta có:
\(2x\left(x+y\right)+x\left(x+y\right)^2=15x\)
\(\Leftrightarrow x\left[2\left(x+y\right)+\left(x+y\right)^2-15\right]=0\)
TH1: x = 0, khi đó \(y^2=-1\) (Vô lý)
TH2: \(\left(x+y\right)^2+2\left(x+y\right)-15=0\Leftrightarrow\orbr{\begin{cases}x+y=3\\x+y=-5\end{cases}}\)
Với x + y = 3 thì x = 3 - y
Thay vào pt (1) ta có: \(3\left(3-y\right)+y^2=4\left(3-y\right)-1\)
\(y^2+y-2=0\Leftrightarrow\orbr{\begin{cases}y=1,x=2\\y=-2,x=5\end{cases}}\)
Với x + y = -5 thì x = - 5 - y
Thay vào pt (1) ta có: \(-5\left(-5-y\right)+y^2=4\left(-5-y\right)-1\)
\(y^2+9y+46=0\) (Vô nghiệm)
Vậy hệ có nghiệm (x;y) = (2;1) và (5;-2).
$2x\left(x+y\right)+2y^2=8y-2$2x(x+y)+2y2=8y−2
Sau đó cộng hai vế tương ứng với pt thứ hai, ta có:
$2x\left(x+y\right)+x\left(x+y\right)^2=15x$2x(x+y)+x(x+y)2=15x
$\Leftrightarrow x\left[2\left(x+y\right)+\left(x+y\right)^2-15\right]=0$⇔x[2(x+y)+(x+y)2−15]=0
TH1: x = 0, khi đó $y^2=-1$y2=−1 (Vô lý)
TH2: $$
Với x + y = 3 thì x = 3 - y
Thay vào pt (1) ta có: $3\left(3-y\right)+y^2=4\left(3-y\right)-1$3(3−y)+y2=4(3−y)−1
$$
Với x + y = -5 thì x = - 5 - y
Thay vào pt (1) ta có: $-5\left(-5-y\right)+y^2=4\left(-5-y\right)-1$−5(−5−y)+y2=4(−5−y)−1
$y^2+9y+46=0$y2+9y+46=0 (Vô nghiệm)
Vậy hệ có nghiệm (x;y) = (2;1) và (5;-2).
Để \(\left(x^2-7x+11\right)^{x^2-13x+42}=1\)
TH1 : \(x^2-7x+11=1\Leftrightarrow\left(x-2\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
TH2 : \(\hept{\begin{cases}x^2-7x+11\ne0\\x^2-13x+42=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-7x+11\ne0\\\left(x-6\right)\left(x-7\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=7\end{cases}}\)
TH3 : \(\hept{\begin{cases}x^2-7x+11=-1\\x^2-13x+42⋮2\\x^2-13x+42\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-3\right)\left(x-4\right)=0\\x^2-13x+42⋮2\\x^2-13x+42\ge0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
=> PT có 6 nghiệm \(x\in\left\{2;3;4;5;6;7\right\}\)
\(\hept{\begin{cases}x=5\\x=3,5\\x=2\end{cases}}\hept{\begin{cases}x=2\\x=4\\x=3\end{cases}}\)
Mình ko viết đc dấu hệ nhiều lần do lỗi latex , mình ghi đc kết quả thôi