K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]=24\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)

\(\Leftrightarrow\left(x^2+5x+5\right)^2-1=24\)

\(\Leftrightarrow\left(x^2+5x+5\right)^2=25\)

Mà \(x^2+5x+5>0\forall x\)

\(\Rightarrow x^2+5x+5=5\Rightarrow x\left(x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy pt có tập nghiệm S={0,-5}

29 tháng 12 2017

pt <=> (x+1).(x+2).(x+3).(x+4) = 24

<=> [(x+1).(x+4)].[(x+2).(x+3)] = 24

<=> (x^2+5x+4).(x^2+5x+6) = 24

<=> (x^2+5x+5)^2-1 = 24

<=> (x^2+5x+5) = 25

=> x^2+5x+5 = 5 [ vì x^2+5x+5 = (x+2,5)^2-0,25 >= -0,25 > -5 ]

=> x=0 hoặc x=-5 

Vậy pt có tập nghiệm S = {-5;0}

k mk nha

4 tháng 4 2017

a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0

=> hoặc (3x2 - 7x – 10) = 0 (1)

hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)

Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0

nên

x1 = - 1, x2 = =

Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0

nên

x3 = 1, x4 =

b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0

=> hoặc x + 3 = 0

hoặc x2 - 2 = 0

Giải ra x1 = -3, x2 = -√2, x3 = √2

c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0

=> hoặc 0,6x + 1 = 0 (1)

hoặc x2 – x – 1 = 0 (2)

(1) ⇔ 0,6x + 1 = 0

⇔ x2 = =

(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5

x3 = , x4 =

Vậy phương trình có ba nghiệm:

x1 = , x2 = , x3 = ,

d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0

⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0

⇔ (2x2 + x)(3x – 10) = 0

⇔ x(2x + 1)(3x – 10) = 0

Hoặc x = 0, x = , x =

Vậy phương trình có 3 nghiệm:

x1 = 0, x2 = , x3 =



25 tháng 9 2019

\(DK:x\ge-\frac{1}{3}\)

\(\Leftrightarrow\frac{2x-1}{\sqrt{3x+1}+\sqrt{x+2}}\left(\sqrt{3x^2+7x+2}+4\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(\frac{\sqrt{3x^2+7x+2}+4}{\sqrt{3x+1}+\sqrt{x+2}}-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(1\right)\\\frac{\sqrt{3x^2+7x+2}+4}{\sqrt{3x+1}+\sqrt{x+2}}=2\left(2\right)\end{cases}}\)

Xet PT(2)

Dat \(\hept{\begin{cases}\sqrt{3x+1}=a\\\sqrt{x+2}=b\end{cases}\left(a,b\ge0\right)}\)

PT(2)\(\Leftrightarrow\frac{ab+4}{a+b}=2\)

\(\Leftrightarrow2a+2b-ab-4=0\)

\(\Leftrightarrow\left(a+2\right)\left(2-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-2\left(3\right)\\b=2\left(4\right)\end{cases}}\)

Xet PT(3)

Ta co:\(a\ge0\)

Nen PT vo nghiem

Xet PT (4)

\(\Leftrightarrow\sqrt{x+2}=2\)

\(\Leftrightarrow x+2=4\)

\(\Leftrightarrow x=2\)

Vay PT co 2 nghiem la \(x_1=\frac{1}{2};x_2=2\)

30 tháng 7 2019

ĐK \(x\ge-2\)

pT<=> \(2\left(x+1\right)\sqrt{x+2}+2\left(x+6\right)\sqrt{x+7}=2x^2+14x+24\)

<=>\(\left(x+1\right)\left(x+2-2\sqrt{x+2}\right)+\left(x+6\right)\left(x+4-2\sqrt{x+7}\right)+x-2=0\)

<=>\(\frac{\left(x+1\right)\left(x^2-4\right)}{x+2+2\sqrt{x+2}}+\frac{\left(x+6\right)\left(x^2+4x-12\right)}{x+4+2\sqrt{x+7}}+x-2=0\forall x>-2\)

=> \(\orbr{\begin{cases}x=2\\\frac{\left(x+1\right)\left(x+2\right)}{x+2+2\sqrt{x+2}}\end{cases}}+\frac{x+6}{x+4+2\sqrt{x+7}}+1=0\left(2\right)\)

Pt (2) + \(x\ge-1\)=> \(VT>0\)=> PT (2) vô nghiệm

+  \(-2< x\le-1\)=> \(\frac{\left(x+1\right)\left(x+2\right)}{x+2+2\sqrt{x+2}}>-1\)=> \(VT>0\)=> PT vô nghiệm

Vậy x=2

12 tháng 2 2020

Đặt \(u=\sqrt{10-x};v=\sqrt{3+x}\)

Phương trình trở thành \(u+v+2uv=17\)

\(\Rightarrow u+v=\sqrt{17}\)

đến đây thì EZ rồi

7 tháng 6 2015

Điều kiện: 3x2 - 6x - 6 \(\ge\) 0 và 2 - x  \(\ge\) 0

pt <=> \(\sqrt{3x^2-6x-6}=3.\left(2-x\right)^2\sqrt{2-x}+\left(7x-19\right)\sqrt{2-x}\)

<=> \(\sqrt{3x^2-6x-6}=\left(3x^2-12x+12+7x-19\right)\sqrt{2-x}\)

<=> \(\sqrt{3x^2-6x-6}=\left(3x^2-5x-7\right)\sqrt{2-x}\) (1)

Đặt \(\sqrt{3x^2-6x-6}=a;\sqrt{2-x}=b;\left(a;b\ge0\right)\)

=> \(3x^2-6x-6=a^2;2-x=b^2\)=> \(a^2-b^2=3x^2-5x-8\) 

=> (1) trở thành: a = (a2 - b2 + 1).b

<=> a = (a- b)(a+b).b + b

<=> (a - b) - (a- b)(a+b).b = 0

<=> (a - b).(1 - b(a+b)) = 0

<=> a = b  hoặc (a+b).b = 1

+) a = b => ......

+) (a+b).b = 1 <=> ab + b2 - 1 = 0

<=> \(\sqrt{3x^2-3x-6}.\sqrt{2-x}+\left(2-x\right)-1=0\)

<=> \(\sqrt{3\left(x^2-x-2\right)\left(2-x\right)}=x-1\)

<=> x \(\ge\) 1; 3(x2 - x - 2)(2 - x) = (x-1)2

<=> ........  

22 tháng 11 2015

bạn  k biết câu nào

22 tháng 11 2015

a.(2x-1)(x-1)(x-3)(2x+3) +9=0

(2x2-3x+1)(2x2-3x-9) +9= 0

dat a=2x2-3x-4 ta co

(a+5)(a-5) +9=0

a2-16=0

a=4 hoac a=-4

=>+,2x2-3x-4=4=>2x2-3x=0=>......

....+,2x2-3x-4=-4+=>.......

\(\left(x-1\right)\left(\sqrt{3x+4}-1\right)=3\left(x+1\right)\)

\(\Leftrightarrow x=7\)

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

5 tháng 8 2017

 (x−1)(√3x+4−1)=3(x+1)  ⇔x=7

tk mk nha