K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2021

a) DKXD: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

P=\(\left(\dfrac{a-1}{2\sqrt{a}}\right)^2.\left(\dfrac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\\ =\dfrac{\left(a-1\right)^2}{4a}.\left(\dfrac{\left(\sqrt{a}-1-\sqrt{a}-1\right)\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right)\)

     = \(\dfrac{a-1}{4a}.\dfrac{-2.2\sqrt{a}}{1}\)

     = \(\dfrac{1-a}{\sqrt{a}}\)

b) P<0 với a ∈ DKXD

=> \(\dfrac{1-a}{\sqrt{a}}< 0\)

mà √a > 0 với ∀a ∈ DKXD

=> 1-a < 0

<=> a>1 ( thoả mãn DKXD)

Vậy để P<0 thì a>1.

c) Để P = 2 với a ∈ DKXD

=> \(\dfrac{1-a}{\sqrt{a}}=2\)

<=> 1-a = 2√a

<=> a + 2√a -1 = 0

<=> \(\left[{}\begin{matrix}\sqrt{a}=-1+\sqrt{2}\\\sqrt{a}=-1-\sqrt{2}\left(loại\right)\end{matrix}\right.\)

<=> a = \(\sqrt{\sqrt{2}-1}\)(thoả mãn DKXD)

Vậy để P =2 thì a = \(\sqrt{\sqrt{2}-1}\)

Sửa đề: \(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

a) Ta có: \(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\left(\dfrac{a}{2\sqrt{a}}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\dfrac{\left(\sqrt{a}-1\right)^2\cdot\left(\sqrt{a}+1\right)^2}{4a}\cdot\dfrac{-4\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{\left(\sqrt{a}-1\right)\cdot\left(\sqrt{a}+1\right)\cdot\left(-1\right)}{\sqrt{a}}\)

\(=\dfrac{-\left(a-1\right)}{\sqrt{a}}\)

\(=\dfrac{1-a}{\sqrt{a}}\)

b) Để P<0 thì \(\dfrac{1-a}{\sqrt{a}}< 0\)

mà \(\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ

nên 1-a<0

hay a>1

Kết hợp ĐKXĐ, ta được: a>1

Vậy: Để P<0 thì a>1

c) Để P=2 thì \(\dfrac{1-a}{\sqrt{a}}=2\)

\(\Leftrightarrow1-a=2\sqrt{a}\)

\(\Leftrightarrow2\sqrt{a}+a-1=0\)

\(\Leftrightarrow a+2\sqrt{a}+1-2=0\)

\(\Leftrightarrow\left(\sqrt{a}+1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}+1=\sqrt{2}\\\sqrt{a}+1=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=\sqrt{2}-1\\\sqrt{a}=-\sqrt{2}-1\left(loại\right)\end{matrix}\right.\)

hay \(a=3-2\sqrt{2}\)(nhận)

Vậy: Để P=2 thì \(a=3-2\sqrt{2}\)

8 tháng 2 2021

1) Biểu thức này là P hả?

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

P = \(\dfrac{\sqrt{a^3}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a^3}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\dfrac{a-1}{\sqrt{a}}\right).\left(\dfrac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{a-1}\right)\)

\(\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{\sqrt{a}}\)\(\dfrac{a+\sqrt{a}+1-\left(a-\sqrt{a}+1\right)+2a+2}{\sqrt{a}}\)

\(\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1+2a+2}{\sqrt{a}}\)

\(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)

2) Để P = 7 với a ∈ ĐKXĐ

⇒ \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\) = 7

⇔ 2a + 2√a+2 = 7√a

⇔ 2a - 5√a + 2 = 0

⇔ \(\left[{}\begin{matrix}a=2\\a=\dfrac{1}{2}\end{matrix}\right.\)( thoả mãn ĐKXĐ)

Vậy...

3) Để P > 6 với a ∈ ĐKXĐ

⇒ \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\) >6

⇔ \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\) - 6 > 0

⇔ \(\dfrac{2a+2\sqrt{a}-6\sqrt{a}+2}{\sqrt{a}}>0\)

Mà √a > 0 với ∀a ∈ ĐKXĐ

⇒ 2a - 4√a + 2 >0

⇔ 2(√a - 1)2 > 0

Do 2(√a - 1)2 ≥ 0 với ∀a ∈ ĐKXĐ

Nên để 2(√a - 1)2 > 0 ⇔ 2(√a - 1)2 ≠ 0

⇔ a ≠ 1

Đối chiếu ĐKXĐ ta được: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

Vậy để P > 6 thì a ∈ ĐKXĐ

 

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

1) Ta có: \(P=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\cdot\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\dfrac{a}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\cdot\left(\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\dfrac{a+\sqrt{a}+1}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}+\dfrac{a-1}{\sqrt{a}}\cdot\left(\dfrac{a+2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\dfrac{a-2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\cdot\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{2\sqrt{a}}{\sqrt{a}}+\dfrac{2a+2}{\sqrt{a}}\)

\(=\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)

2) Để P=7 thì \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}=7\)

\(\Leftrightarrow2a+2\sqrt{a}+2=7\sqrt{a}\)

\(\Leftrightarrow2a+2\sqrt{a}-7\sqrt{a}+2=0\)

\(\Leftrightarrow2a-5\sqrt{a}+2=0\)

\(\Leftrightarrow2a-4\sqrt{a}-\sqrt{a}+2=0\)

\(\Leftrightarrow2\sqrt{a}\left(\sqrt{a}-2\right)-\left(\sqrt{a}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{a}-2\right)\left(2\sqrt{a}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}-2=0\\2\sqrt{a}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=2\\2\sqrt{a}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=4\\\sqrt{a}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=4\left(nhận\right)\\a=\dfrac{1}{4}\left(nhận\right)\end{matrix}\right.\)

Vậy: Để P=7 thì \(a\in\left\{4;\dfrac{1}{4}\right\}\)

26 tháng 4 2022

\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\left(dk:x\ne0,\pm1\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

Vậy \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)

a) Ta có: \(P=\dfrac{\sqrt{a}-1}{3\sqrt{a}+\left(\sqrt{a}-1\right)^2}-\dfrac{6-2\left(\sqrt{a}-1\right)^2}{a\sqrt{a}-1}+\dfrac{2}{\sqrt{a}-1}\)

\(=\dfrac{\sqrt{a}-1}{a+\sqrt{a}+1}-\dfrac{-2a+4\sqrt{a}+4}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}+\dfrac{2}{\sqrt{a}-1}\)

\(=\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\dfrac{-2a+4\sqrt{a}+4}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}+\dfrac{2\left(a+\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{a-2\sqrt{a}+1+2a-4\sqrt{a}-4+2a+2\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{5a-4\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{5a-5\sqrt{a}+\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{5\sqrt{a}\left(\sqrt{a}-1\right)+\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(5\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{5\sqrt{a}+1}{a+\sqrt{a}+1}\)

b) Để P=1 thì \(5\sqrt{a}+1=a+\sqrt{a}+1\)

\(\Leftrightarrow a+\sqrt{a}+1-5\sqrt{a}-1=0\)

\(\Leftrightarrow a-4\sqrt{a}=0\)

\(\Leftrightarrow\sqrt{a}\left(\sqrt{a}-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=0\\\sqrt{a}-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\left(nhận\right)\\a=16\left(nhận\right)\end{matrix}\right.\)

Vậy: Để P=1 thì \(a\in\left\{0;16\right\}\)

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

Điều kiện để $Q$ có nghĩa.

\(x>0; x\neq 1\)

\(Q=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(=\frac{1}{4}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2.\frac{(\sqrt{x}+1)^2-(\sqrt{x}-1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}\)

\(=\frac{1}{4}\left(\frac{x-1}{\sqrt{x}}\right)^2.\frac{x+1+2\sqrt{x}-(x-2\sqrt{x}+1)}{x-1}\)

\(=\frac{1}{4}.\frac{(x-1)^2}{x}.\frac{4\sqrt{x}}{x-1}\)

\(=\frac{x-1}{\sqrt{x}}\)

b)

\(Q=3\sqrt{x}-3\)

\(\Leftrightarrow \frac{x-1}{\sqrt{x}}=3(\sqrt{x}-1)\)

\(\Leftrightarrow \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}=3(\sqrt{x}-1)\)

\(\Leftrightarrow (\sqrt{x}-1)(\frac{\sqrt{x}+1}{\sqrt{x}}-3)=0\)

\(x\neq 1\Rightarrow \sqrt{x}-1\neq 0\). Do đó:

\(\frac{\sqrt{x}+3}{\sqrt{x}}-3=0\Rightarrow 3=2\sqrt{x}\)

\(\Rightarrow x=\frac{9}{4}\) (thỏa mãn)

1 tháng 2 2019

ây ông ở trên ông ghi là \(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

sao xuống dưới lại thành \(\dfrac{\sqrt{x}+3}{\sqrt{x}}\)

sửa lại đi ông ơi

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

ĐK: $x>0; a\neq 1; a\neq 4$

a) 

$M=\frac{\sqrt{a}-(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}-1)}:\frac{(\sqrt{a}+1)(\sqrt{a}-1)-(\sqrt{a}-2)(\sqrt{a}+2)}{(\sqrt{a}-2)(\sqrt{a}-1)}$

$=\frac{1}{\sqrt{a}(\sqrt{a}-1)}:\frac{3}{(\sqrt{a}-2)(\sqrt{a}-1)}=\frac{1}{\sqrt{a}(\sqrt{a}-1)}.\frac{(\sqrt{a}-2)(\sqrt{a}-1)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}$

b) 

$M>\frac{-1}{2}\Leftrightarrow \frac{\sqrt{a}-2}{3\sqrt{a}}+\frac{1}{2}>0$

$\Leftrightarrow \frac{5\sqrt{a}-4}{6\sqrt{a}}>0$

$\Leftrightarrow 5\sqrt{a}-4>0$

$\Leftrightarrow a>\frac{16}{25}$

Kết hợp với ĐKXĐ thì $a>\frac{16}{25}; a\neq 1; a\neq 4$

25 tháng 5 2023

\(a,\) Rút gọn 

\(A=\dfrac{3}{\sqrt{7}-2}+\sqrt{\left(\sqrt{7}-3\right)^2}\)

\(=\dfrac{3}{\sqrt{7}-2}+\left|\sqrt{7}-3\right|\)

\(=\dfrac{3}{\sqrt{7}-2}+3-\sqrt{7}\)

\(=\dfrac{3+\left(3-\sqrt{7}\right)\left(\sqrt{7}-2\right)}{\sqrt{7}-2}\)

\(=\dfrac{3+3\sqrt{7}-6-7+2\sqrt{7}}{\sqrt{7}-2}\)

\(=\dfrac{5\sqrt{7}-10}{\sqrt{7}-2}\)

\(=\dfrac{5\left(\sqrt{7}-2\right)}{\sqrt{7}-2}\)

\(=5\)

Vậy \(A=5\)

\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(dkxd:x\ge0,x\ne1\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{x-1}{\sqrt{x}+1}\right)\)

\(=\dfrac{\sqrt{x}.\sqrt{x}-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}}{x-\sqrt{x}}.\left(\sqrt{x}-1\right)\)

\(=\sqrt{x}-1\)

Vậy \(B=\sqrt{x}-1\)

\(b,\) Để \(B< A\) thì \(\sqrt{x}-1< 5\)

\(\Leftrightarrow\sqrt{x}< 6\)

\(\Leftrightarrow x< 36\)

5 tháng 11 2023

\(a,\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{x+\sqrt{x}+2}{x-1}\right):\dfrac{1}{\sqrt{x}-1}\left(dkxd:x\ge0;x\ne1\right)\)

\(=\left[\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\cdot\left(\sqrt{x}-1\right)\)

\(=\dfrac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)\)

\(=\dfrac{\left(x+2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\)

\(=\sqrt{x}+1\)

\(b,\) Thay \(x=4-2\sqrt{3}\) vào biểu thức trên, ta được:

\(\sqrt{4-2\sqrt{3}}+1\)

\(=\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}+1\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+1\)

\(=\left|\sqrt{3}-1\right|+1\)

\(=\sqrt{3}-1+1\)

\(=\sqrt{3}\)

Vậy: ...

\(\text{#}Toru\)

5 tháng 11 2023

\(a\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{x+\sqrt{x}+2}{x-1}\right):\dfrac{1}{\sqrt{x}-1}\\ =\left(\dfrac{\sqrt{x}-1}{x-1}+\dfrac{x+\sqrt{x}+2}{x-1}\right).\sqrt{x}-1\\ =\dfrac{x+\sqrt{2}+1}{x-1}.\sqrt{x}-1\\ =\sqrt{x}+1\\ b,tacóx=4-2\sqrt{3}=\left(\sqrt{3}-\sqrt{1}\right)^2thãy=\sqrt{3}-\sqrt{1}vàobiểuthức,tađược\\ \sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}-1=\sqrt{3}-1-1=\sqrt{3}-2\)

8 tháng 2 2021

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

Ta có: \(P=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)

\(=\dfrac{a+2\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)

\(=a-b\)

Thay a = 2√3 và b = √3 vào P, ta được:

P = 2√3 - √3 = √3

Vậy...

 

 

a) Ta có: \(P=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\cdot\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)

\(=\dfrac{a-2\sqrt{ab}+b+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\cdot\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\dfrac{a+2\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\cdot\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}\cdot\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)

\(=a-b\)

b) Thay \(a=2\sqrt{3}\) và \(b=\sqrt{3}\) vào biểu thức P=a-b, ta được:

\(P=2\sqrt{3}-\sqrt{3}=\sqrt{3}\)

Vậy: Khi \(a=2\sqrt{3}\) và \(b=\sqrt{3}\) thì \(P=\sqrt{3}\)

26 tháng 12 2021

a: \(A=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

27 tháng 12 2021

\(ĐK:a>0;a\ne1;a\ne4\\ a,A=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,A>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)