Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\dfrac{2}{3}-\dfrac{1}{2}-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}-\dfrac{1}{7}\right)\)
\(=-\dfrac{1}{6}\cdot\dfrac{17}{28}\)
\(=-\dfrac{17}{168}\)
b) \(\left(\dfrac{15}{21}\div\dfrac{5}{7}\right)\div\left(\dfrac{6}{5}\div2\right)\)
\(=1\div\dfrac{3}{5}\)
\(=\dfrac{5}{3}\)
15: \(=\dfrac{7-13}{14}\cdot\dfrac{7}{5}-\dfrac{-2+3}{21}\cdot\dfrac{7}{5}\)
\(=\dfrac{7}{5}\left(-\dfrac{6}{14}-\dfrac{1}{21}\right)\)
\(=\dfrac{7}{5}\cdot\dfrac{-10}{21}=\dfrac{-2}{3}\)
16: \(=\dfrac{3}{5}:\dfrac{-2-5}{30}+\dfrac{3}{5}:\left(\dfrac{-1}{3}-\dfrac{16}{15}\right)\)
\(=\dfrac{3}{5}\cdot\dfrac{-30}{7}+\dfrac{3}{5}:\dfrac{-5-16}{15}\)
\(=\dfrac{3}{5}\cdot\dfrac{-30}{7}+\dfrac{3}{5}\cdot\dfrac{-5}{7}\)
\(=\dfrac{3}{5}\cdot\left(-5\right)=-3\)
a) \(\dfrac{-3}{5}+\dfrac{7}{21}+\dfrac{-4}{5}+\dfrac{7}{5}\)
\(=\left(-\dfrac{3}{5}+\dfrac{-4}{5}+\dfrac{7}{5}\right)+\dfrac{7}{21}\)
\(=0+\dfrac{7}{21}\)
\(=\dfrac{7}{21}\)
b) `-3/17 + ( 2/3 + 3/17)`
` = -3/17 + 2/3 + 3/17`
` = 2/3 + ( -3/17 +3/17)`
` = 2/3 + 0`
` = 2/3`
c)
` -5/21 + ( -16/21 +1)`
\(=\dfrac{-5}{21}+\dfrac{-16}{21}+1\)
\(=\left(\dfrac{-5}{21}+\dfrac{-16}{21}\right)+1\)
\(=-1+1=0\)
\(F=\dfrac{5}{6}+6\dfrac{5}{6}\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(F=\dfrac{5}{6}+\dfrac{41}{6}\left(\dfrac{225}{20}-\dfrac{37}{4}\right):\dfrac{25}{3}\)
\(F=\dfrac{5}{6}+\dfrac{41}{6}.2.\dfrac{3}{25}\)
\(F=\dfrac{5}{6}+\dfrac{41}{25}.\dfrac{3}{25}\)
\(F=\dfrac{5}{6}+\dfrac{41}{25}\)
\(F=\dfrac{371}{150}\)
\(D=\left(\dfrac{136}{15}-\dfrac{28}{5}+\dfrac{62}{10}\right)\times\dfrac{21}{24}\)
\(D=\left(\dfrac{272}{30}-\dfrac{168}{30}+\dfrac{186}{30}\right)\times\dfrac{21}{24}\)
\(D=\dfrac{290}{30}\times\dfrac{21}{24}\)
\(D=\dfrac{29}{3}\times\dfrac{7}{8}\)
\(D=\dfrac{203}{24}\)
Đặt \(S=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1008}\right)\)
\(=\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\)
Nên:
\(A=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)\(=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\)\(\Rightarrow A=1\)
Vậy A = 1
Chúc bạn học tốt!!