Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không có khái niệm hàm số đơn điệu tại 1 điểm x hoặc y nào đó, nên bạn xem lại đề
Lời giải:
Ta có \(4^x-2m.2^x+(2m^2+5)=0\)
Coi \(2^x=a\) thì pt chuyển về pt bậc 2:
\(a^2-2ma+(2m^2+5)=0(*)\)
Ta thấy \(\Delta'=m^2-(2m^2+5)=-(m^2+5)<0\), do đó pt $(*)$ vô nghiệm, tức là không tồn tại $a$, kéo theo không tồn tại $x$
Do đó không tồn tại giá trị nào của $m$ thỏa mãn đkđb
a) \(z^4+z^2-6=0\)
\(\Leftrightarrow z^4+3z^2-2z^2-6=0\)
\(\Leftrightarrow z^2\left(z^2+3\right)-2\left(z^2+3\right)=0\)
\(\Leftrightarrow\left(z^2+3\right)\left(z^2-2\right)=0\)
\(\Leftrightarrow z^2-2=0\) ( Vì: \(\left(z^2+3>0\right)\) )
\(\Leftrightarrow\left[\begin{array}{nghiempt}z=\sqrt{2}\\z=-\sqrt{2}\end{array}\right.\)
b) \(z^4+7z^2+10=0\)
\(\Leftrightarrow z^4+2z^2+5z^2+10=0\)
\(\Leftrightarrow z^2\left(z^2+2\right)+5\left(z^2+2\right)=0\)
\(\Leftrightarrow\left(z^2+2\right)\left(z^2+5\right)=0\) (vô nghiệm)
Vậy hp vô nghiêm
Câu 1:
\(\Leftrightarrow x^2-4x+5+\sqrt{x^2-4x+5}-5=m\)
Đặt \(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}=a\ge1\)
\(\Rightarrow a^2+a-5=m\) (1)
Xét phương trình: \(x^2-4x+5=a^2\Leftrightarrow x^2-4x+5-a^2=0\)
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=5-a^2\end{matrix}\right.\)
\(\Rightarrow\) Nếu \(5-a^2>0\Rightarrow1\le a< \sqrt{5}\) thì pt có 2 nghiệm dương
Nếu \(5-a^2\le0\) \(\Leftrightarrow a\ge\sqrt{5}\) thì pt có 1 nghiệm dương
Vậy để pt đã cho có đúng 2 nghiệm dương thì: (1) có đúng 1 nghiệm thỏa mãn \(1\le a< \sqrt{5}\) hoặc có 2 nghiệm pb \(a_1>a_2\ge\sqrt{5}\)
Xét \(f\left(a\right)=a^2+a-5\) với \(a\ge1\)
\(f'\left(a\right)=0\Rightarrow a=-\frac{1}{2}< 1\Rightarrow f\left(a\right)\) đồng biến \(\forall a\ge1\) \(\Rightarrow y=m\) chỉ có thể cắt \(y=f\left(a\right)\) tại nhiều nhất 1 điểm có hoành độ \(a\ge1\)
\(f\left(1\right)=-3\) ; \(f\left(\sqrt{5}\right)=\sqrt{5}\)
\(\Rightarrow\) Để pt có 2 nghiệm pb đều dương thì \(-3\le m< \sqrt{5}\)
Câu 2:
\(x^2-3x+2\le0\Leftrightarrow1\le x\le2\) (1)
Ta có: \(mx^2+\left(m+1\right)x+m+1\ge0\)
\(\Leftrightarrow m\left(x^2+x+1\right)\ge-x-1\)
\(\Leftrightarrow m\ge\frac{-x-1}{x^2+x+1}=f\left(x\right)\) (2)
Để mọi nghiệm của (1) là nghiệm của (2) \(\Leftrightarrow\left(2\right)\) đúng với mọi \(x\in\left[1;2\right]\)
\(\Rightarrow m\ge\max\limits_{\left[1;2\right]}f\left(x\right)\)
\(f'\left(x\right)=\frac{-\left(x^2+x+1\right)+\left(2x+1\right)\left(x+1\right)}{\left(x^2+x+1\right)^2}=\frac{x^2+2x}{\left(x^2+x+1\right)^2}>0\) \(\forall x\in\left[1;2\right]\)
\(\Rightarrow f\left(x\right)\) đồng biến \(\Rightarrow\max\limits_{\left[1;2\right]}f\left(x\right)=f\left(2\right)=-\frac{3}{7}\)
\(\Rightarrow m\ge-\frac{3}{7}\)
\(y'=3ax^2+2bx+c\)
Khoảng đồng biến của hàm số chứa hữu hạn số nguyên nếu \(y'\ge0\) khi \(x\in\left(m;n\right)\) với \(m;n\) hữu hạn
\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta'=b^2-3ac>0\end{matrix}\right.\)
Lời giải chi tiết
Ví dụ hàm số y = x4
Có đạo hàm y’ = 4x3
Cho y’ = 0 thì x = 0.
học tốt