Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không có khái niệm hàm số đơn điệu tại 1 điểm x hoặc y nào đó, nên bạn xem lại đề
ta có
\(y'=3x^2-6x=3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
y' >0 khi \(x\in\left(-\infty,0\right)\cup\left(2,+\infty\right)\)
Vậy hàm đồng biến trên hai khoảng là \(\left(-\infty,0\right)\cup\left(2,+\infty\right)\)
Lời giải chi tiết
Ví dụ hàm số y = x4
Có đạo hàm y’ = 4x3
Cho y’ = 0 thì x = 0.
học tốt
Lời giải:
\(y=ax^3+bx^2+cx+d\)
\(\Rightarrow y'=3ax^2+2bx+c\)
Vì $M(0;2)$ và $N(2;-2)$ là 2 điểm cực trị của đths đã cho nên \(x=0; x=2\) là 2 nghiệm của pt \(y'=3ax^2+2bx+c=0\)
Do đó:
\(\left\{\begin{matrix}
3a.0^2+b.0+c=0\\
3a.2^2+2.b.2+c=0\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix}
c=0\\
12a+4b=0\end{matrix}\right.(1)\)
Mặt khác, \(M(0;2); N(2;-2)\in (y)\) nên:
\(\left\{\begin{matrix} 2=a.0^3+b.0^2+c.0+d\\ -2=a.2^3+b.2^2+c.2+d\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} d=2\\ 8a+4b+2=-2\end{matrix}\right.(2)\)
Từ \((1);(2)\Rightarrow \left\{\begin{matrix} a=1\\ b=-3\\ c=0\\ d=2\end{matrix}\right.\)
Vậy $y=x^3-3x^2+2$
Suy ra \(y(-2)=-18\)
đáp án là :
Hàm số đã cho xác định trên D=R.
Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔
Bảng biến thiên:
Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).
Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)
Hàm số đã cho xác định trên D=R.
Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔
Bảng biến thiên:
Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).
Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)
P/S : quá dễ , t là thần đồng mà .
Mỗi ngày 3 T i c k , giờ làm như lời hứa đi
đáp án:
Hàm số đã cho xác định trên D = R.
Với m = -1. Khi đó hàm số trở thành y = -2x + 4 ; y' = -2 < 0 ∀x∈R, không thỏa mãn yêu cầu bài toán.
Với m ≠ -1. Ta có f'(x)= 3(m+1)x2 - 6(m + 1)x + 2m
+ Hàm số đồng biến trên khoảng có độ dài không nhỏ hơn 1 khi và chỉ khi f'(x) = 0 có hai nghiệm phân biệt x1,x2 và hàm số đồng biến trong đoạn [x1;x2 ] thỏa mãn |x1 - x2 | ≥ 1
+ f'(x)= 0 có hai nghiệm phân biệt x1,x2 và hàm số đồng biến trong đoạn[x1;x2]
Theo Viét ta có
+ Với |x1 - x2 | ≥ 1 ⇔ (x1 + x2 )2 - 4x1 x2 - 1 ≥ 0
Đối chiếu điều kiện ta có m ≤ -9.
\(y'=3ax^2+2bx+c\)
Khoảng đồng biến của hàm số chứa hữu hạn số nguyên nếu \(y'\ge0\) khi \(x\in\left(m;n\right)\) với \(m;n\) hữu hạn
\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta'=b^2-3ac>0\end{matrix}\right.\)