Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+x\right)^2-2x^2-2x-15\)
\(=\left(x^2+x\right)^2-\left(2x^2+2x+15\right)\)
\(=\left(x^2+x\right)^2-\left[\left(2x^2+2x\right)+15\right]\)
\(=\left(x^2+x\right)^2-\left[2.\left(x^2+x\right)+15\right]\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-15\) \(\left(1\right)\)
đặt \(x^2+x=t\)
\(\left(1\right)\)\(=\) \(t^2-2t-15\)
\(=\left(t-1\right)^2-16\)
\(=\left(t-1-4\right)\left(t-1+4\right)\)
\(=\left(t-5\right)\left(t+3\right)\)
thay \(t=x^2+x\) ta có
\(\left(1\right)=\left(x^2+x-5\right)\left(x^2+x+3\right)\)
các câu còn lại tương tự nha
học tốt
x^10 + x^5 + 1
= x^10 + x^9 - x^9 + x^8 - x^8 + x^7 - x^7 + x^6 - x^6 + x^5 + x^5 - x^5 + x^4 - x^4 + x^3 - x^3 + x^2 - x^2 + x - x + 1
= (x^10 + x^9 + x^8) - (x^9 + x^8 + x^7) + (x^7 + x^6 + x^5) - (x^6 + x^5 + x^4) + (x^5 + x^4 + x^3) - (x^3 + x^2 + x) + (x^2 + x + 1)
= x^8 (x^2 + x + 1) - x^7 (x^2 + x + 1) + x^5 (x^2 + x + 1) - x^4 (x^2 + x + 1) + x^3 (x^2 + x + 1) - x (x^2 + x + 1) + (x^2 + x + 1)
= (x^2 + x + 1) (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)
\(\left(c^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left(a^2+b^2-2ab-9\right)\left(a^2+b^2+2ab-1\right)\)
\(=\left[\left(a-b\right)^2-9\right]\left[\left(a+b\right)^2-1\right]\)
\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
ai giup minh vs
C=(1/2+1/3+....+1/2017+1/2018)/(1/2017+2/2016+.....+2016/2+2017/1)
co gang giup minh :( minhthanks nhieu lam
\(x^3+y^3+z^3-3xyz\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)+z^3-3x^2y-3xy^2-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz+2xy\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
Giỏi toán cần phải cọ xát nhiếu;
\(x^3+y^3+z^3-3xyz=\left(x^3+3x^2y+3xy^2+y^3\right)+z^3-3abc-3x^2y-3xy^2\)
Bạn thêm vào 2 hạng tử , sau đó bớt 2 hạng tử để biểu thức ko thay đổi nhé, ở đây xuất hiện 1 hằng đẳng thức:
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
Ta thấy lại tiếp tục xuất hiên 1 hằng đẳng thức: a^3+b^3 nên ta có:
\(=\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
ủng hộ nha các bạn
1.a) (3x+1)2-4(x-2)2= (3x+1)2-[2(x-2)]2=[(3x+1)-2(x-2)][(3x+1)+2(x-2)]=(x+3)(5x-1)
b) (a2+b2-5)2-4(ab+2)2= (a2+b2-5)2-[2(ab+2)]2 = (a2+b2-5-2ab-4)(a2+b2-5+2ab+4)=[(a-b)2-9][(a+b)2-1]
2. 3x2+9x-30=3x2-6x+15x-30=3x(x-2)+15(x-2)=3(x+5)(x-2)
b. x3-5x2-14x=x3+2x2-7x2-14x=x2(x+2)-7x(x+2)=(x2-7x)(x+2)
a) \(\left(3x+1\right)^2-4\left(x-2\right)^2\)
\(=\left(3x+1\right)^2-\left[2.\left(x-2\right)\right]^2\)
\(=\left(3x+1\right)^2-\left(2x-4\right)^2\)
\(=\left[3x+1-2x+4\right].\left[3x+1+2x-4\right]\)
\(=\left(x+5\right)\left(5x-3\right)\)
b) \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5\right)^2-\left[2.\left(ab+2\right)\right]^2\)
\(=\left(a^2+b^2-5\right)^2-\left(2ab+4\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left[\left(a-b\right)^2-9\right].\left[\left(a+b\right)^2-1\right]\)
\(=\left[\left(a-b-3\right)\left(a-b+3\right)\right].\left[\left(a+b-1\right)\left(a+b+1\right)\right]\)
a) \(3x^2+9x-30\)
\(=3\left(x^2+3x-10\right)\)
\(=3\left(x^2-2x+5x-10\right)\)
\(=3.\left[x\left(x-2\right)+5.\left(x-2\right)\right]\)
\(=3.\left[\left(x+5\right)\left(x-2\right)\right]\)
b) \(x^3-5x^2-14x\)
\(=x\left(x^2-5x-14\right)\)
\(=x\left(x^2+2x-7x-14\right)\)
\(=x.\left[x\left(x+2\right)-7.\left(x+2\right)\right]\)
\(=x.\left[\left(x-7\right)\left(x+2\right)\right]\)
k 1 nguoi toi da 3 k mi ban tru khi ban co 7 cai may tinh
nick phụ ạn ơi