Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)4a2b4-c4d2=(2ab2)2-(c2d)2=(2ab2-c2d)(2ab2+c2d)
b) (a+b)3-(a-b)3== 2a( a² + 2ab + b² - a² + b² + a² - 2ab + b² )
= 2a( a² + 3b²)
c)(6x-1)2-(3x+2)=36x2-12x+1-3x-2=36x2-15x-1=(6x)2-2.6x.\(\frac{15}{12}\)+\(\left(\frac{15}{12}\right)^2\)-\(\frac{41}{16}\)
=(6x-\(\frac{5}{4}\))2-\(\sqrt{\frac{41}{4}}^2\)=\(\left(6x-\frac{5}{4}-\sqrt{\frac{41}{4}}\right)\left(6x-\frac{5}{4}+\sqrt{\frac{41}{4}}\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
(3x + 2)^2 + (3x - 2)^2 - 2(9x^2 - 4)
\(=\left(3x+2\right)^2-2\left(3x+2\right)\left(3x-2\right)+\left(3x-2\right)^2\)
\(=\left(3x+2-\left(3x-2\right)\right)^2\)
\(=\left(3x+2-3x+2\right)^2\)
\(=4^2\)
\(=16\)
\(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)
\(=\left(3x+2\right)^2+\left(3x-2\right)^2-2.\left(3x-2\right)\left(3x+2\right)\)
\(=\left(3x+2-3x+2\right)^2\)
\(=4^2=16\)
\(x^3+6x^2+9x\)
\(=x\left(x^2+6x+9\right)\)
\(=x\left(x^2+2.x.3+3^2\right)\)
\(=x\left(x+3\right)^2\)
1) x2 - 4x + 3
= x2 - x - 3x + 3
= (x2 - x) - (3x - 3)
= x.(x - 1) - 3.(x - 1)
= (x - 1).(x - 3)
2) x2 - x - 6
= x2 + 2x - 3x - 6
= (x2 + 2x) - (3x + 6)
= x.(x + 2) - 3.(x + 2)
= (x + 2).(x - 3)
3) x2 + 5x + 4
= x2 + x + 4x + x
= (x2 + x) + (4x + x)
= x.(x + 1) + 4.(x + 1)
= (x + 1).(x + 4)
4) x2 + 5x + 6
= x2 + 2x + 3x + 6
= (x2 + 2x) + (3x + 6)
= x.(x + 2) + 3.(x + 2)
= (x + 2).(x + 3)
a,=x^2+x+3x+3
=x(x+1)+3(x+1)
=(x+3)(x+1)
b,x^2-3x+2x-6
=x(x-3)+2(x-3)
=(x+2)(x-3)
2 câu còn lại từ lm nha.........
a) \(x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
1.a) (3x+1)2-4(x-2)2= (3x+1)2-[2(x-2)]2=[(3x+1)-2(x-2)][(3x+1)+2(x-2)]=(x+3)(5x-1)
b) (a2+b2-5)2-4(ab+2)2= (a2+b2-5)2-[2(ab+2)]2 = (a2+b2-5-2ab-4)(a2+b2-5+2ab+4)=[(a-b)2-9][(a+b)2-1]
2. 3x2+9x-30=3x2-6x+15x-30=3x(x-2)+15(x-2)=3(x+5)(x-2)
b. x3-5x2-14x=x3+2x2-7x2-14x=x2(x+2)-7x(x+2)=(x2-7x)(x+2)
a) \(\left(3x+1\right)^2-4\left(x-2\right)^2\)
\(=\left(3x+1\right)^2-\left[2.\left(x-2\right)\right]^2\)
\(=\left(3x+1\right)^2-\left(2x-4\right)^2\)
\(=\left[3x+1-2x+4\right].\left[3x+1+2x-4\right]\)
\(=\left(x+5\right)\left(5x-3\right)\)
b) \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5\right)^2-\left[2.\left(ab+2\right)\right]^2\)
\(=\left(a^2+b^2-5\right)^2-\left(2ab+4\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left[\left(a-b\right)^2-9\right].\left[\left(a+b\right)^2-1\right]\)
\(=\left[\left(a-b-3\right)\left(a-b+3\right)\right].\left[\left(a+b-1\right)\left(a+b+1\right)\right]\)
a) \(3x^2+9x-30\)
\(=3\left(x^2+3x-10\right)\)
\(=3\left(x^2-2x+5x-10\right)\)
\(=3.\left[x\left(x-2\right)+5.\left(x-2\right)\right]\)
\(=3.\left[\left(x+5\right)\left(x-2\right)\right]\)
b) \(x^3-5x^2-14x\)
\(=x\left(x^2-5x-14\right)\)
\(=x\left(x^2+2x-7x-14\right)\)
\(=x.\left[x\left(x+2\right)-7.\left(x+2\right)\right]\)
\(=x.\left[\left(x-7\right)\left(x+2\right)\right]\)