Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA có
2S = a.ha = b.hb = c.hc
<=> 3a = 4b = 5c
<=> \(\frac{a}{20}=\frac{b}{15}=\frac{c}{12}=t\) ( t > 0 )
=> a= 20t ; b = 15t ; c = 12t
b^2 + c^2 = (15t)^2 + ( 12t)^2 = 225t^2 + 144t^2 = 369t^2 < 400t^2 = (20t)^2 = a^2
=> b^2 + c^2 < a^2
Ta có : a.ha = b.hb = c.hc (cùng = 2 lần diện tích tam giác)
=> 3a = 4b = 5c => \(\frac{3a}{60}=\frac{4b}{60}=\frac{5c}{60}\)=> \(\frac{a}{20}=\frac{b}{15}=\frac{c}{12}\)
Đặt \(\frac{a}{20}=\frac{b}{15}=\frac{c}{12}\) = k ( k > 0 ) => a = 20k ; b = 15.k; c = 12.k
=> a2 = 400k2; b2 = 225k2 ; c2 = 144k2
=> b2 + c2 = 369k2 < 400.k2 => b2 + c2 < a2
Vậy....
CM :nếu a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất - Đại số - Diễn đàn Toán học
\(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+a}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)
Vậy M>1
2x+1.3y=36x=(4.9)x=4x.9x=22x.32x
=>2x+1=22x
=>x+1=2x=>2x-x=1=>x=1
và 3y=32x=>y=2x=>y=2.1=2
Vậy (x;y)=(1;2)
\(4b^2c^2-\left(b^2+c^2-a^2\right)=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)=\left(a^2-\left(b-c\right)^2\right)\left(\left(b+c\right)^2-a^2\right)\)
\(=\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)>0\)(dpcm)
Vì a-b+c >0
a+b-c>0
b+c-a> 0
a+b+c>0
fzdyxchgbvrhdfnckudjkzjxrfeudfcchfnvrjfh urkdjfhbv rujfv vc bffvn c,kujdfhc n