K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

Với điều kiện \(\left(m-2\cos x\right)\left(m-2\sin x\right)\ne0\) (*) phương trình đã cho tương đương với

\(\left(m\sin x-2\right)\left(m-2\sin x\right)=\left(m\cos x-2\right)=\left(m-2\cos x\right)\)

\(\Leftrightarrow m^2\sin x-2m-2m\sin^2x+4\sin x=m^2\cos x-2m-2m\cos^2x+4\cos x\)

\(\Leftrightarrow2m\left(\cos^2x-\sin^2x\right)-m^2\left(\cos x-\sin x\right)-4\left(\cos x-\sin x\right)=0\)

\(\Leftrightarrow\left(\cos x-\sin x\right)\left(2m\left(\cos x+\sin x\right)-m^2-4\right)=0\) (1)

a) Nếu \(m=0\) thì (1) \(\Leftrightarrow\cos x-\sin x=0\)\(\Leftrightarrow\tan x=1\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\). Nghiệm này sẽ không thỏa mãn điều kiện (*) khi và chỉ khi \(\left(m-2\cos\left(\dfrac{\pi}{4}+k\pi\right)\right)\left(m-2\sin\left(\dfrac{\pi}{4}+k\pi\right)\right)=0\)

\(\Leftrightarrow\left(0-\left(-1\right)^k\sqrt{2}\right)\left(0-\left(-1\right)^k\sqrt{2}=0\right)\)

\(\Leftrightarrow\left(-1\right)^k\sqrt{2}=0\) , vô lí.

Vậy khi \(m=0\), phương trình đã cho có nghiệm là \(x=\dfrac{\pi}{4}+k\pi\)

b) Nếu \(m\ne0\) thì (1) tương đương với tập hợp hai phương trình:

\(\tan x=1\) (2) và \(\sqrt{2}\cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{m^2+4}{2m}\)\(\Leftrightarrow\cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{m^2+4}{2m\sqrt{2}}\) (3)

Trong đó phương trình (3) vô nghiệm vì \(\left|\dfrac{m^2+4}{2m\sqrt{2}}\right|=\dfrac{m^2+4}{2\sqrt{2}\left|m\right|}\ge\dfrac{2\sqrt{4m^2}}{2\sqrt{2}\left|m\right|}=\sqrt{2}>1\).

Phương trình (2) có nghiệm là \(x=\dfrac{\pi}{4}+k\pi\). Nghiệm này sẽ không thỏa mãn điều kiện (*) khi và chỉ khi

\(\left(m-2\cos\left(\dfrac{\pi}{4}+k\pi\right)\right)\left(m-2\sin\left(\dfrac{\pi}{4}+k\pi\right)\right)=0\)\(\Leftrightarrow\left(m-\left(-1\right)^k\sqrt{2}\right)\left(m-\left(-1\right)^k\sqrt{2}=0\right)\)

\(\Leftrightarrow m=\left(-1\right)^k\sqrt{2}\), trái giả thiết \(m\ne\pm\sqrt{2}\).

Tóm lại, trong mọi trường hợp phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+k\pi\) Điều kiện \(x\in[20\pi;30\pi]\) tương đương với \(20\pi\le\dfrac{\pi}{4}+k\pi\le30\pi\)\(\Leftrightarrow20-\dfrac{1}{4}\le k\le30-\dfrac{1}{4}\)\(\Leftrightarrow k=21;22;23;...;29\). Số nghiệm của phương trình trong đoạn đang xét là 9.

25 tháng 12 2017

\(pt\Leftrightarrow2sinx.cosx+\left(sinx+cosx\right)-2=m\)
đặt \(sinx+cosx=t\) , do \(x\in\left(0;\dfrac{3\pi}{4}\right)\) thì \(x+\dfrac{\pi}{4}\in\left(\dfrac{\pi}{4};\pi\right)\).
Vì vậy \(t=sinx+cosx=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\) có tập giá trị là \(\left(0;\sqrt{2}\right)\).
Suy ra \(2sinxcosx=t^2-1\), ta có phương trình:
\(t^2-1+t-2=m\Leftrightarrow t^2+t-3=m\) với \(t\in\left(0;\sqrt{2}\right)\).
Xét hàm số \(f\left(t\right)=t^2+t-3\)\(f'\left(t\right)=2t+1\ge0\) với mọi \(t\in\left(0;\sqrt{2}\right)\).
Suy ra hàm số \(f\left(t\right)=t^2+t-3\) đồng biến trên khoảng \(\left(0;\sqrt{2}\right)\).
\(f\left(0\right)=-3;f\left(\sqrt{2}\right)=\sqrt{2}-1\).
Vậy với \(-3< m< \sqrt{2}-1\) thì \(t^2+t-3=m\) có nghiệm duy nhất.
Quay trở lại phép đặt t ta có: \(t=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\) . Để phương trình \(t=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\) có hai nghiệm thuộc khoảng \(\left(0;\dfrac{3\pi}{4}\right)\) thì \(t\) nhận các giá trị tương ứng với \(x+\dfrac{\pi}{4}\in\left(\dfrac{\pi}{4};\dfrac{3\pi}{4}\right)\) hay \(\dfrac{\sqrt{2}}{2}< t< 1\).
Suy ra \(\dfrac{-5+\sqrt{2}}{2}< m< 0\),

1 tháng 2 2018

Bài giả của bạn Bùi Thị Vân có nhầm lẫn, đáp số bạn Vân đưa ra là \(\dfrac{-5+\sqrt{2}}{2}< m< 0\). Có thể thấy \(m=-1\) thuộc khoảng \(\left(\dfrac{-5+\sqrt{2}}{2};0\right)\) nhưng với \(m=-1\) thì phương trình \(t^2+t-3=m\Leftrightarrow t^2+t-3=-1\)\(\Leftrightarrow t=1;t=-2\). Phương trình đã cho tương đương với \(\sin x+\cos x=1\Leftrightarrow\sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\). Đặt \(y=x+\dfrac{\pi}{4}\) thì \(\dfrac{\pi}{4}< y< \pi\) (do \(x\in\left(0;\dfrac{3\pi}{4}\right)\)) và phương trình trở thành \(\sin y=\dfrac{1}{\sqrt{2}}\). Trong khoảng \(\dfrac{\pi}{4}< y< \pi\)phương trình \(\sin y=\dfrac{1}{\sqrt{2}}\) có nghiệm duy nhất \(y=\dfrac{3\pi}{4}\) nên phương trình đã cho có nghiệm duy nhất \(x=\dfrac{\pi}{2}\) (chứ không phải là có đúng hai nghiệm như yêu cầu đề bài). Xin sửa lại bài giải như sau:

- Đặt \(t=\sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\left(\sin x+\cos x\right)\) thì \(t\sqrt{2}=\sin x+\cos x\Rightarrow2t^2=1+2\sin x\cos x=1+\sin2x\) nên \(\sin2x=2t^2-1\), phương trình đã cho trở thành \(2t^2-1+\sqrt{2}t-2=m\Leftrightarrow2t^2+\sqrt{2}t-3=m\) (1)

-Vì phương trình đã cho được xét trong khoảng \(\left(0;\dfrac{3\pi}{4}\right)\) tức là \(x+\dfrac{\pi}{4}\in\left(\dfrac{\pi}{4};\pi\right)\) suy ra \(t=\sin\left(x+\dfrac{\pi}{4}\right)\in(0;1]\). Do đó để phương trình đã cho có nghiệm \(x\in\left(0;\dfrac{3\pi}{4}\right)\), điều kiện cần và đủ là (1) có nghiệm \(t\in(0;1]\), tức là số \(m\) phải thuộc tập giá trị của hàm số \(f\left(t\right)=2t^2+\sqrt{2}t-3\) với \(t\in(0;1]\). Ta có \(f'\left(t\right)=4t+\sqrt{2}>0,\)\(\forall t\in(0;1]\) nên \(f\left(t\right)\)đồng biến trong khoảng \(t\in(0;1]\) và tập giá trị của nó là khoảng \((f\left(0\right);f\left(1\right)]=(-3;\sqrt{2}-1]\). Như vậy điều kiện cần để yêu cầu bài toán được thực hiện là \(m\in(-3;\sqrt{2}-1]\).

- Với \(m\in(-3;\sqrt{2}-1]\), chú ý rằng \(f\left(t\right)\) đồng biến trong khoảng \(t\in(0;1]\) nên (1) có nghiệm duy nhất \(t_0\in(0;1]\) và phương trình đã cho tương đương với \(\sin\left(x+\dfrac{\pi}{4}\right)=t_0\) (2). Ta cần đếm số nghiệm của (2) trong khoảng \(\left(0;\dfrac{3\pi}{4}\right)\). Để làm điều đó, ta đặt \(y=x+\dfrac{\pi}{4}\Leftrightarrow x=y-\dfrac{\pi}{4}\) thì (2) trở thành \(\sin y=t_0\)\(y\in\left(\dfrac{\pi}{4};\pi\right)\).

Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Hình trên biểu diễn đồ thị hàm số \(y=\sin x\) với \(x\in(\dfrac{\pi}{4};\pi]\). Ta thấy phương trình \(\sin y=t_0\) có 2 nghiệm trong khoảng này khi và chỉ khi \(\dfrac{\sqrt{2}}{2}< t_0< 1\), tức là \(m\) phải thuộc tập giá trị của hàm số \(f\left(t\right)=2t^2+\sqrt{2}t-3\) với

\(t\in\left(\dfrac{\sqrt{2}}{2};1\right)\), điều này xảy ra khi và chỉ khi \(f\left(\dfrac{\sqrt{2}}{2}\right)< m< f\left(1\right)\Leftrightarrow-1< m< \sqrt{2}-1\).

Đáp số: \(-1< m< \sqrt{2}-1\).

Chú ý: Bài toán này có thể giải không dùng đạo hàm. Các bạn thử tìm một cách giải như vậy.

AH
Akai Haruma
Giáo viên
11 tháng 1 2018

Ở tất cả các dạng bài như thế này em chỉ cần ghi nhớ công thức:

\(d(u(x))=u'(x)dx\)

Câu 1)

Ta có \(I_1=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} e^{\sin x}\cos xdx=\int _{\frac{\pi}{4}}^{\frac{\pi}{2}}e^{\sin x}d(\sin x)\)

Đặt \(\sin x=t\Rightarrow I_1=\int ^{1}_{\frac{\sqrt{2}}{2}}e^tdt=\left.\begin{matrix} 1\\ \frac{\sqrt{2}}{2}\end{matrix}\right|e^t=e-e^{\frac{\sqrt{2}}{2}}\)

Câu 2)

\(I_2=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}e^{2\cos x+1}\sin xdx=\frac{-1}{2}\int ^\frac{\pi}{2}_{\frac{\pi}{4}}e^{2\cos x+1}d(2\cos x+1)\)

Đặt \(2\cos x+1=t\Rightarrow I_2=\frac{-1}{2}\int ^{1}_{1+\sqrt{2}}e^tdt\)

\(=\frac{-1}{2}.\left.\begin{matrix} 1\\ 1+\sqrt{2}\end{matrix}\right|e^t=\frac{-1}{2}(e-e^{1+\sqrt{2}})\)

AH
Akai Haruma
Giáo viên
11 tháng 1 2018

Câu 3:

Có \(I_3=\int ^{e}_{1}\frac{e^{2\ln x+1}}{x}dx=\int ^{e}_{1}e^{2\ln x+1}d(\ln x)\)

\(=\frac{1}{2}\int ^{e}_{1}e^{2\ln x+1}d(2\ln x+1)\)

Đặt \(2\ln x+1=t\Rightarrow I_3=\frac{1}{2}\int ^{3}_{1}e^tdt=\frac{1}{2}.\left.\begin{matrix} 3\\ 1\end{matrix}\right|e^t=\frac{1}{2}(e^3-e)\)

Câu 4:

\(I_4=\int ^{1}_{0}xe^{x^2+2}dx=\frac{1}{2}\int ^{1}_{0}e^{x^2+2}d(x^2+2)\)

Đặt \(x^2+2=t\Rightarrow I_4=\frac{1}{2}\int ^{3}_{2}e^tdt=\frac{1}{2}.\left.\begin{matrix} 3\\ 2\end{matrix}\right|e^t=\frac{1}{2}(e^3-e^2)\)

20 tháng 2 2021

Câu nào mình biết thì mình làm nha.

1) Đổi thành \(\dfrac{y^4}{4}+y^3-2y\) rồi thế số.KQ là \(\dfrac{-3}{4}\)

2) Biến đổi thành \(\dfrac{t^2}{2}+2\sqrt{t}+\dfrac{1}{t}\) và thế số.KQ là \(\dfrac{35}{4}\)

3) Biến đổi thành 2sinx + cos(2x)/2 và thế số.KQ là 1

 

5 tháng 7 2017

Tính \(I=\int_0^{\dfrac{\pi}{2}}\dfrac{cos^{2017}x}{sin^{2017}x+cos^{2017}}dx\left(1\right)\)

Đặt \(t=cosx\Rightarrow sinx=\sqrt{1-cos^2x}\)

\(\Rightarrow dt=-sinx.dx\)

\(\Rightarrow I=\int_0^1\dfrac{t^{2017}.}{\sqrt{1-t^2}.\left(\left(\sqrt{1-t^2}\right)^{2017}+t^{2017}\right)}dt\)

Đặt: \(t=siny\Rightarrow\sqrt{1-t^2}=cosy\)

\(\Rightarrow dt=cosy.dy\)

\(\Rightarrow I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}y.cosy}{cosy\left(cos^{2017}y+sin^{2017}y\right)}dy=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}y}{\left(cos^{2017}y+sin^{2017}y\right)}\)

\(\Rightarrow I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}x}{\left(cos^{2017}x+sin^{2017}x\right)}\left(2\right)\)

Cộng (1) và (2) ta được

\(2I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}x+cos^{2017}x}{sin^{2017}x+cos^{2017}x}dx=\int_0^{\dfrac{\pi}{2}}1dx\)

\(=x|^{\dfrac{\pi}{2}}_0=\dfrac{\pi}{2}\)

\(\Rightarrow I=\dfrac{\pi}{4}\)

Thế lại bài toán ta được

\(\dfrac{\pi}{4}+t^2-6t+9-\dfrac{\pi}{4}=0\)

\(\Leftrightarrow t^2-6t+9=0\)

\(\Leftrightarrow t=3\)

Chọn đáp án C

mỗi trắc nghiệm thoy mà lm dài ntn s @@

chắc lên đó khó lắm ag

NV
21 tháng 11 2018

1.a/ \(\left\{{}\begin{matrix}3^{x+1}>0\\5^{x^2}>0\end{matrix}\right.\) \(\forall x\) \(\Rightarrow\) pt vô nghiệm

b/ Mình làm câu b, câu c bạn tự làm tương tự, 3 câu này cùng dạng

Lấy ln hai vế:

\(ln\left(3^{x^2-2}.4^{\dfrac{2x-3}{x}}\right)=ln18\Leftrightarrow ln3^{x^2-2}+ln4^{\dfrac{2x-3}{x}}-ln18=0\)

\(\Leftrightarrow\left(x^2-2\right)ln3+\dfrac{2x-3}{x}2ln2-ln\left(2.3^2\right)=0\)

\(\Leftrightarrow x^3ln3-2x.ln3+4x.ln2-6ln2-x.ln2-2x.ln3=0\)

\(\Leftrightarrow x^3ln3-4x.ln3+3x.ln2-6ln2=0\)

\(\Leftrightarrow x.ln3\left(x^2-4\right)+3ln2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2ln3+2x.ln3+3ln2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\Rightarrow x=2\\x^2ln3+2x.ln3+3ln2=0\left(1\right)\end{matrix}\right.\)

Xét (1): \(\left(x^2+2x\right)ln3=-3ln2\Leftrightarrow x^2+2x=\dfrac{-3ln2}{ln3}=-3log_32\)

\(\Leftrightarrow\left(x+1\right)^2=1-3log_32=log_33-log_38=log_3\dfrac{3}{8}< 0\)

\(\Rightarrow\left(1\right)\) vô nghiệm

\(\Rightarrow\) pt có nghiệm duy nhất \(x=2\)

2/ Pt đã cho tương đương:

\(2017^{sin^2x}-2017^{cos^2x}=cos^2x-sin^2x\)

\(\Leftrightarrow2017^{sin^2x}+sin^2x=2017^{cos^2x}+cos^2x\)

Xét hàm \(f\left(t\right)=2017^t+t\) (\(0\le t\le1\))

\(\Rightarrow f'\left(t\right)=2017^t.ln2017+1>0\) \(\forall t\) \(\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)

\(\Rightarrow sin^2x=cos^2x\Rightarrow cos^2x-sin^2x=0\Rightarrow cos2x=0\)

\(\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Thế k=0; k=1 ta được 2 nghiệm thuộc đoạn đã cho là \(x=\dfrac{\pi}{4};x=\dfrac{3\pi}{4}\)

\(\Rightarrow\) tổng nghiệm là \(T=\dfrac{\pi}{4}+\dfrac{3\pi}{4}=\pi\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

a)

Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)

\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)

\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)

b)

\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)

\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

c)

\(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).

Đặt \(x+1=t\)

\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)

\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)

Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)

\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)