Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a chia 18 dư 12 => a = 18k+12. Ta có:
18k chia hết cho 6 (Vì 18 chia hết cho 6)
12 chia hết cho 6
=> 18k+12 chia hết cho 6
=> a chia hết cho 6(đpcm)
18k chia hết cho 9 (Vì 18 chia hết cho 9)
12 chia 9 dư 3
=> 18k+12 chia 9 dư 3
=> 18k+12 không chia hết cho 9
=> a không chia hết cho 9(đpcm)
=>
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.
Ta có: a chia 18 dư 2
Đặt \(a=18k+12\left(k\in N\right)\)
\(a=18k+12=3\left(6k+4\right)⋮3\)
\(a=18k+12=9\left(2k+1\right)+3⋮̸9\)
\(a=18k+12=3\left(6k+4\right)⋮3\)
\(a=18k+12=18k+9+3=9\left(2k+1\right)+3⋮̸9\)
Ta có
\(a=12k+9\) (k là số nguyên dương)
\(\Rightarrow a=3\left(4k+3\right)⋮3\)
Ta có
\(a=12k+8+1=4\left(3k+2\right)+1\) => a:4 dư 1 nên a không chia hết cho 4
Do a chia 12 dư 9 nên a = 12k + 9 \(\left(k\in N\right)\)
Ta có:
\(12k⋮3\)
\(9⋮3\)
\(\Rightarrow a=\left(12k+9\right)⋮3\)
Do \(12k⋮4\)
\(9⋮̸4\)
\(\Rightarrow a=\left(12k+9\right)⋮̸4\)
a chia 18 dư 12 => a = 18.b + 12
Ta thấy 18 chia hết cho 3 => 18b chia hết cho 3
12 chia hết cho 3
=> 18b + 12 chia hết cho 3 hay a chia hết cho 3
Ta thấy 18 chia hết cho 9 => 18b chia hết cho 9
12 ko chia hết cho 9
=> 18b + 12 ko chia hết cho 9 hay a ko chia hết cho 9
a chia 18 dư 12 => a = 18.b + 12
Ta thấy 18 chia hết cho 3 => 18b chia hết cho 3
12 chia hết cho 3
=> 18b + 12 chia hết cho 3 hay a chia hết cho 3
Ta thấy 18 chia hết cho 9 => 18b chia hết cho 9
12 ko chia hết cho 9
=> 18b + 12 ko chia hết cho 9 hay a ko chia hết cho 9
Bài 45 :
a ) Theo bài ra ta có :
a = 9.k + 6
a = 3.3.k + 3.2
\(\Rightarrow a⋮3\)
b ) Theo bài ra ta có :
a = 12.k + 9
a = 3.4.k + 3.3
\(\Rightarrow a⋮3\)
Vì : \(a⋮3\Rightarrow a⋮6\)
c ) Ta thấy :
30 x 31 x 32 x ...... x 40 + 111
= 37 x 30 x ....... x 40 + 37 x 3
\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)
Bài 46 :
a ) số thứ nhất là n số thứ 2 là n+1
tích của chúng là
n(n+1)
nếu n = 2k ( tức n là số chẵn)
tích của chúng là
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn
Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2
b ) Nếu n là số lẻ thì : n + 3 là số chẵn
Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2
Nếu n là số chẵn thì :
n . ( n + 3 ) luôn chi hết cho 2
c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6
Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7
Vì 1 ; 3 ; 7 không chia hết cho 2
Vậy n2 + n + 1 không chia hết cho 2